标题 | 初中数学年度工作总结 |
范文 | 初中数学年度工作总结(精选20篇) 初中数学年度工作总结 篇1教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 在中学任职以来,我本着以重实际、勤钻研、求实效的工作原则,以培养学生创新精神和实践能力为重点,以新课程改革为契机,优化教学常规,深化课堂教学改革,大力推行素质教育,求真、务实、创新、高效地工作着,现将教学工作总结如下: 一、一片冰心在玉壶——树立新的教育理念,坚定教书育人信念。 教育事业乃民族大业,振兴教育人人有责,素质教育和新课程改革对中学教育提出新的要求,学生成为教育的中心,爱成为教师职业道德的核心,也成为教书育人的根本途径,因此,我确立了“一切为了人的发展”的教育理念,明确了“用真挚的爱教育每一个学生”,用适合每个学生的方法教育学生的教学工作目标。 二、衣带渐宽终不悔——我的教学工作。 任职期间,我在坚持抓好新课程理念应用的同时,大胆改革课堂教学,探索新的教学方法,具体表现在: 1、进一步优化教学常规,充分发挥老师的主导作用。围绕着“什么是有效的历史教学?怎样才能提高课堂教学的有效性?”这一问题,我作了认真思考和分析,明确了教学思路和重点,一是在备课上下功夫,为此,我继续钻研和解读新课程标准、考纲和新教材,继续分析、了解学情,关注学生的知识基础、思想动态,备课做到知识点准确全面,知识体系简明科学,授课方式艺术多变,感染力强,使课堂教学集知识性、艺术性、思想性于一体,从而激发了学生的学习兴趣,有效调动了学生的学习积极性,大大提高了课堂效率。二是在巩固训练上设底线。即精心设计课后作业和单元检测,定时定量训练,全批全改,然后通过讲评使学生不仅查缺补漏,明确了知识,而且掌握了高质量完成试卷的技巧和方法,提高了解决问题的能力。 2、调动学生积极性,突出学生的主体地位。如何突出学生的主体地位?我从调动学生的学习积极性入手,因为积极性提高了,学生才会真正投入到学习中来,做到自主学习与合作探究,才会主动发现问题和解决问题。为此,在备课时,考虑学生的知识储备和兴趣点,设计出激发学生兴趣和激活学生思维的问题;课堂上与学生建立平等、民主的学伴关系,给自己的教学风格定位为亲切、风趣、激情、广博,这就是采取多鼓励、少批评的评 初中数学年度工作总结 篇2时间飞逝,回望开学初的计划,深感“做事的过程就是结果,努力能带动效率。”这学期我们数学教研组的工作在三个备课组长及全组数学教师的努力下基本完成了工作任务。 现总结如下: 一、突出研课特色,以公开课为平台,提升教研组教师学习能力通过学校各项活动,我们教师课堂教学水平有很大提高,三个备课组长以学生学段不同,科学合理地进行教学工作,我们强化数学教研组建设,积极发挥教研组备课组的团队合作力量,走了教研组教学研究特色化,便于提高我们教师教学水平,要求每位教师认真钻研教材,探讨教法,并积极地落实到自己的'教学中。通过骨干教师带动青年教师观课议课评课,提升教师对教学各项能力,并议课中,及时发现一些“共同”问题,紧锣密鼓地开展研究,并探讨解决教学共性问题以及教师教学个人问题,一定程度上有效的提高了教师相互学习能力。 二、多种培训及教学研修,提升教研组教师素养学校创造机会提高教师的业务学习能力。选派优秀教师积极参加外出跟岗培训,回来后上好汇报课,实现资源共享。联系温州市送教下乡活动,县常规培训活动,市县中考复习说明培训,多个角度,多个平台,进行了教师业务和素养培训,效果显著。 三、丰富活动,提高数学教研组综合能力整合教学活动,展开备课组特点的个性行动研究,在教研中,我们阶段交流活动,解决研究过程遇到的问题。九年级进行二轮专题复习研究,由王大团老师做公开课,并在课题组员和全体数学组展开研讨,提高了二轮专题复习研究的有效性。七八年级对如何处理培优和教学相宜联系,平时更针对性的,更有效的进行教学整合,使培优和教学双赢。这学期各年段积极组织学生参加生活中的数学的初赛与复赛,并获得多个一、二、三等奖奖项,成果喜人。 四、发挥备课组长领导力,加强集体备课通过教研组平台,要求备课组长细化、优化备课组各项常规工作,发挥教师的积极性,有计划地开展教研组下达各项数学教学活动。以教研组为单位进行教学研究,发挥备课组的优势,把教研组作为一个有力的团体,打团队仗,让每一位教师在团队中发挥自己的潜能,凝聚智慧,创造智慧。 五、教研工作的不足之处教研组内教师多,改变提升教研组教师教学水平,还是有很大距离,改变教师教学方式和教学观念也有困难,教研组教师平均年龄较大,在专业上开始进入了疲倦期,如何激发老师们的工作激情,快速度过工作倦怠期,进入新一轮工作激情期,这是我们教研组面临的一个问题。经验型的老教师过多,也给我们带来了很大工作压力,从教研活动的公开课到试卷命题等等,活动热情和投入严重不足,每次活动的执行力都会阻碍重重,因此各备课组长压力极大。 最后,感谢大家这几年在工作上的大力支持,我们教研组的工作,是见证大家的共同成长,让我们收获各自的精彩,同时也成就我们作为数学大组的集体荣誉!再次,感谢有你们! 价方式,让学生的个性得到自由健康的发展,从而形成肯定的自我意识。 3、加强教学研究,充分发挥教科研活动对常规教学的辅助功能。一是把集体备课、听课、评课落到实处,加强教师间的交流与合作,真正实现脑力资源的共享。二是加强学习,参加各级新课程培训和远程教育培训等各种学习活动,进一步更新教育理念。坚持阅读每期《中史参》、《历史教学》和《历史研究》等权威学术期刊,了解最新史学动态,并将这些思路和方法及时运用到教学中去,大大提高了教育思想水平和教学水平。三是撰写了《对新课标下历史课堂教学的认识》、《如何发挥中学历史教学的素质教育功能》等教学和学习心得。针对教辅市场良莠不齐的现状,我用一年时间编写了一套教辅用书,由黄河出版社发行,得到同行的广泛好评。 4、担任班主任工作期间,我建立了一套行之有效的管理方法,教育学生树立远大理想,培养学生集体观念和合作进取意识,用发展的眼光看待学生,以平常心态对待后进生,对学生晓之以理、动之以情,因势利导,变消极因素为积极因素,从而使学生形成了积极的人生态度,树立了正确的人生价值观。 三、一蓑烟雨任平生——继续我的执着与勤奋。 一分春华,一分秋实。付出心血与汗水,也收获着充实和沉甸甸的情感,我所教班级的学生,学习兴趣浓厚,成绩突出。教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 初中数学年度工作总结 篇3不知不觉,一个学期的教学工作又告一段落了。本学期是我第一次担任数学教学工作,经验尚浅,开始,对于重难点,易错点及中考方向可以说毫无头绪。为不辜负校领导及前辈们的信任,我丝毫不敢怠慢,认真学,积极请教,努力适应新时期教学工作的要求,从各方面严格要求自己,结合学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有效率地开展。一学期下来确实取得了一定的成绩。为使今后的工作取得更大的进步,现对本学期教学工作做出总结,希望能发扬优点,克服不足,以促进教训工作更上一层楼。 一、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,选择教学方法,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。 二、增强上课技能,提高教学质量,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学需求和学能力,让各个层次的学生都得到提高。现在很多学生反映喜欢上数学课了。 初中数学年度工作总结 篇4一、学情分析的目标: (1)进一步培养良好的数学行为习惯和学习习惯。 (2)加强学风建设,培养学习数学的兴趣,明确学习任务,注重学法指导,提高学习效率。 (3)培养学生获得知识和技能,培养观察和分析推理的能力,培养学生实事求是,严肃认真的科学态度和学习方法。 二、学情分析的内容: 主要包括学生学习起点状态的分析、学生潜在状态的分析两部分。学生起点状态的分析主要从三个维度展开:知识维度,指学生的认知基础;技能维度,指学生已有的学习能力;素质维度,指学生的学习态度、学习习惯、意志品质……学生潜在状态的分析,主要指学生可能发生的状况与可能的发展。下面我就初中数学课作学情分析,敬请各位老师斧正。 在我的数学教学中,我认为学生的数学基础影响学生的学习兴趣,九年级任务重,学习进度快,两级分化严重,学生学习主动性不够,学生学习习惯有待提高。学生除了需要学习数学,还要学习其它科目,时间有限,需要我们教师教会学生解题方法以提高速度。 三、学情分析的方法: 1.学生的热点问题要善于剖析 我们捕捉到的来自学生中间的信息,可能非常凌乱,成因也可能会很复杂,与数学教学的联系或许未必紧密,不可能把捕捉到的所有信息简单地堆砌到课堂教学中去。这就需要教师学会用实事求是的观点、方法,耐心分析、遴选出与思想数学结合最紧密、最有代表性的学生热点。分清哪些是积极的、哪些是消极的 2.用心捕捉学生热点问题 学生在为人处事的生活实践中,常常会对某一事物或某一问题表现出极大的关注和倾向,这种关注点和倾向性构成了学生的热点,成为把脉学情的捷径。数学课是一门思维较强的课程,准确把握学生学习中的热点问题,有助于增强教学的实效性和针对性。 做好学生的思想工作,阐明中考竞争的严峻形势,让学生有忧患意识,从而调动学习的积极性。多与各科教师联系,及时了解学生动态,接受科任老师的建议。多与家长交流,形成合力,共同督促学生学习,使其进步。学生进行深刻的自我反思,对自己的学习提出具体的要求,促成每个学生形成适合自己的良好学习方法。 初中数学年度工作总结 篇5自然数的分类包括了奇数和偶数,质数与合数、1和0。 自然数的分类 ①按能否被2整除分 可分为奇数和偶数。 1、奇 数:不能被2整除的数叫奇数。 2、偶 数:能被2整除的数叫偶数。 注:0是偶数。(20__年国际数学协会规定,零为偶数.我国20__年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。 ②按因数个数分 可分为质数、合数、1和0。 1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。 2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。 3、1:只有1个因数。它既不是质数也不是合数。 4、当然0不能计算因数,和1一样,也不是质数也不是合数。 备注:这里是因数不是约数。 同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。 初中数学年度工作总结 篇6一.圆的定义 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。 2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。 二.圆心 1.定义1中的定点为圆心。 2.定义2中绕的那一端的端点为圆心。 3.圆任意两条对称轴的交点为圆心。 4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。 注:圆心一般用字母O表示 5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。 6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。 7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的`二分之一.d=2r或r=二分之d。 8.圆的半径或直径决定圆的大小,圆心决定圆的位置。 三.圆的基本性质 1.圆的对称性 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2.垂径定理 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5.夹在平行线间的两条弧相等。 (1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。 四.圆和圆 1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。 2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。 3.两个圆有两个交点,叫做两个圆的相交。 4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。 5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。 五.正多边形和圆 1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。 2.正多边形与圆的关系: (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。 (2)这个圆是这个正多边形的外接圆。 初中数学年度工作总结 篇7一、圆 1、圆的有关性质 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。 经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。 2、反证法 反证法的三个步骤: ①假设命题的结论不成立; ②从这个假设出发,经过推理论证,得出矛盾; ③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证三角形中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180° 与三角形内角和等于180°矛盾。 ∴不可能有二个以上是钝角。 即最多只能有一个是钝角。 三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。 五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 六、圆的判定性质 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合 5.圆的内部可以看作是圆心的距离小于半径的点的集合 6.圆的外部可以看作是圆心的距离大于半径的点的集合 7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 dr 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20.①两圆外离 dR+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(Rr) ⑤两圆内含dr) 初中数学年度工作总结 篇8一元一次方程定义 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。 一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。 即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。 一元一次方程的五个核心问题 一、什么是等式?1+1=1是等式吗? 表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。 一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。 等式与代数式不同,等式中含有等号,代数式中不含等号。 等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。 二、什么是方程,什么是一元一次方程? 含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。 只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。 凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。 三、等式有什么牛掰的基本性质吗? 将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。 移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。 去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。 四、等式一定是方程吗?方程一定是等式吗? 等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。 五、"解方程"与"方程的解"是一回事儿吗? 方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。 初中数学年度工作总结 篇9列出方程(组)解应用题的一般步骤是: 1审题:弄清题意和题目中的已知数、未知数; 2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验; 7作答:包括单位名称在内进行完整的答语。 一,行程问题 基本概念:行程问题是研究物体运动的,它研究的'是物体速度、时间、行程三者之间的关系。基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程 追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2 二、利润问题 现价=原价*折扣率 折扣价=现价/原价*100% 每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用 利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价 三、计算利息的基本公式 储蓄存款利息计算的基本公式为:利息=本金×存期×利率 税率=应纳数额/总收入*100% 本息和=本金+利息 税后利息=本金*存期*利率*(1-税率)税后利息=利息*税率 利率-利息/存期/本金/*100%利率的换算: 年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%) 四、浓度问题 溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量 五、增长率问题 若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n=b或a(1-x)=bn 六、工程问题 工作效率=总工作量/工作时间工作时间=总工作量/工作效率 七、赛事,票价问题 赛事 单循环赛:n(n-1)/2 淘汰赛:n个球队,比赛场数为n-1场次票价则对应的不一样的赛制乘以对应的单价。 初中数学年度工作总结 篇10一、一次函数图象 y=kx+b 一次函数的图象可以由k、b的正负来决定: k大于零是一撇(由左下至右上,增函数) k小于零是一捺(由右上至左下,减函数) b等于零必过原点; b大于零交点(指图象与y轴的交点)在上方(指x轴上方) b小于零交点(指图象与y轴的交点)在下方(指x轴下方) 其图象经过(0,b) 和 (-b/k , 0) 这两点(两点就可以决定一条直线),且(0,b) 在 y轴上, (-b/k , 0) 在x轴上。 b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。 二、不等式组的解集 1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1 。 2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a A 的解集是 解集 小小的取小 B 的解集是 解集 大大的取大 C 的解集是 解集 大小的 小大的取中间 D 的解集是空集 解集 大大的 小小的无解 另需注意等于的问题。 初中数学年度工作总结 篇11知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。 非负数 非负数大于或等于0。 非负数中含有有理数和无理数。 非负数的和或积仍是非负数。 非负数的和为零,则每个非负数必等于零。 非负数的积为零,则至少有一个非负数为零。 非负数的绝对值等于本身。 常见的非负数 实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。 常见表现形式 非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。 知识归纳:任何一个非负数乘以-1都会得到一个非正数。 初中数学年度工作总结 篇12参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会: 一.对新教材有了初步了解 学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。 二.对课堂教学设计、教学案例的编写方面的内容有了提高。 培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。 三、教学实战能力得到加强 本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。 四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。 整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。 总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。 初中数学年度工作总结 篇13一、数与代数A:数与式: 1:有理数 有理数: ①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值: ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。 有理数的运算:加法: ①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。 减法: 减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘得0。 ③乘积为1的两个有理数互为倒数。 除法: ①除以一个数等于乘以一个数的倒数。 ②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2:实数 无理数:无限不循环小数叫无理数 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数/0的立方根是0/负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: ①实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 3:代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项: ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。 ②把同类项合并成一项就叫做合并同类项。 ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4:整式与分式 整式: ①数与字母的乘积的代数式叫单项式,几个单项式的.和叫多项式,单项式和多项式统称整式。 ②一个单项式中,所有字母的指数和叫做这个单项式的次数。 ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。 A0=1,A-P=1/AP 整式的乘法: ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法: ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式 方法:提公因式法/运用公式法/分组分解法/十字相乘法 分式: ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。 ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 除法:除以一个分式等于乘以这个分式的倒数。 加减法: ①同分母的分式相加减,分母不变,把分子相加减。 ②异分母的分式先通分,化为同分母的分式,再加减。 分式方程: ①分母中含有未知数的方程叫分式方程。 ②使方程的分母为0的解称为原方程的增根。 B:方程与不等式 1:方程与方程组 一元一次方程: ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 2:不等式与不等式组 不等式: ①用符号〉,=,〈号连接的式子叫不等式。 ②不等式的两边都加上或减去同一个整式,不等号的方向不变。 ③不等式的两边都乘以或者除以一个正数,不等号方向不变。 ④不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。 一元一次不等式组: ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ③求不等式组解集的过程,叫做解不等式组。 3:函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数: ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。 ②当B=0时,称Y是X的正比例函数。 一次函数的图象: ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数Y=KX的图象是经过原点的一条直线。 ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。 ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。 二、空间与图形 A:图形的认识: 1:点,线,面 点,线,面: ①图形是由点,线,面构成的。 ②面与面相交得线,线与线相交得点。 ③点动成线,线动成面,面动成体。 展开与折叠: ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。 ②N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 3视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧,扇形: ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。 ②圆可以分割成若干个扇形。 2:角 线: ①线段有两个端点。 ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。 ③将线段的两端无限延长就形成了直线。直线没有端点。 ④经过两点有且只有一条直线。 比较长短: ①两点之间的所有连线中,线段最短。 ②两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示: ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。 ②一度的1/60是一分,一分的1/60是一秒。 角的比较: ①角也可以看成是由一条射线绕着他的端点旋转而成的。 ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时 初中数学年度工作总结 篇14一、全新的研修,全新的体验。 20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。 晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。 各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。 二、艰巨的任务,共同的成果。 这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为20xx年全省初中数学教师全员远程研修开发课例资源。 开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《20xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的工作起了很好的指导作用。 第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。 伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。 更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。 每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。 第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。 12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。 三、不同的体会,共同的收获。 (一)这次研修,给了大家太多的感慨。 教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的'跟进践行,在坚决问题中,成长自己,促进学生。 (二)这次研修,给了大家太多的感动。 参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。 (三)这次研修,给了大家太多的收获。 虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。 (四)这次研修,给了大家更多的思考。 日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。 我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。 初中数学年度工作总结 篇15诱导公式的本质 所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。 常用的诱导公式 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)=sin kz cos(2k)=cos kz tan(2k)=tan kz cot(2k)=cot kz 公式二: 设为任意角,的三角函数值与的三角函数值之间的关系: sin=-sin cos=-cos tan=tan cot=cot 公式三: 任意角与 -的三角函数值之间的关系: sin(-)=-sin cos(-)=cos tan(-)=-tan cot(-)=-cot 公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系: sin=sin cos=-cos tan=-tan cot=-cot 初中数学年度工作总结 篇16顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。 中位线 中位线概念 (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。 注意: (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。 (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。 初中数学年度工作总结 篇17点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。 初中数学知识点:因式分解的一般步骤 关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。 因式分解的一般步骤 如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式, 通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。 注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。 相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。 初中数学年度工作总结 篇18平方根表示法: 一个非负数a的平方根记作,读作正负根号a。a叫被开方数。 中被开方数的取值范围: 被开方数a≥0 平方根性质: ①一个正数的平方根有两个,它们互为相反数。 ②0的平方根是它本身0。 ③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。 平方根与算术平方根区别: 1、定义不同。 2表示方法不同。 3、个数不同。 4、取值范围不同。 联系: 1、二者之间存在着从属关系。 2、存在条件相同。 3、0的算术平方根与平方根都是0 含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。 求正数a的算术平方根的方法; 完全平方数类型: ①想谁的平方是数a。 ②所以a的平方根是多少。 ③用式子表示。 求正数a的算术平方根,只需找出平方后等于a的正数。 初中数学年度工作总结 篇19平方差公式:a^2;-b^2;=(a+b)(a-b); 完全平方公式:a^2;±2ab+b^2;=(a±b)^2;; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;); 立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;); 完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;. 其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca) 例如:a^2; +4ab+4b^2; =(a+2b)^ 初中数学年度工作总结 篇201.不在同一直线上的三点确定一个圆 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合 5.圆的内部可以看作是圆心的距离小于半径的点的集合 6.圆的外部可以看作是圆心的距离大于半径的点的集合 7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11.定理圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12. ①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理圆的切线垂直于经过切点的半径 15.推论1经过圆心且垂直于切线的直线必经过切点 16.推论2经过切点且垂直于切线的直线必经过圆心 17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20. ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-rr) ④两圆内切 d=R-r(R>r) ⑤两圆内含dr) 21.定理相交两圆的连心线垂直平分两圆的公共弦 22.定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的.内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 24.正n边形的每个内角都等于(n-2)×180°/n 25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长 27.正三角形面积√3a/4 a表示边长 28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 29.弧长计算公式:L=n兀R/180 30.扇形面积公式:S扇形=n兀R^2/360=LR/2 31.内公切线长= d-(R-r) 外公切线长= d-(R+r) 32.定理 一条弧所对的圆周角等于它所对的圆心角的一半 33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r |
随便看 |
|
范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。