标题 | C笔试题算法 |
范文 | C笔试题算法 C语言能直接访问硬件的物理地址,能进行位(bit)操作。兼有高级语言和低级语言的许多优点。下面就由第一范文网小编为大家介绍一下C笔试题算法的文章,欢迎阅读。 C笔试题算法篇1 冒泡法: 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i { for(int j=Count-1;j>=i;j--) { if(pData[j] { iTemp = pData[j-1]; pData[j-1] = pData[j]; pData[j] = iTemp; } } } } void main { int data = {10,9,8,7,6,5,4}; BubbleSort(data,7); for (int i=0;i<7;i++) cout< } 倒序 第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次) 第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:6次 其他: 第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次) 第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。 现在注意,我们给出O方法的定义: 若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!) 现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以(n)=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。 C笔试题算法篇2 交换法: 交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。 #include void ExchangeSort(int* pData,int Count) { int iTemp; for(int i=0;i { for(int j=i+1;j { if(pData[j] { iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; } } } } void main { int data = {10,9,8,7,6,5,4}; ExchangeSort(data,7); for (int i=0;i<7;i++) cout< } 倒序 第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次) 第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:6次 其他: 第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次) 第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。 C笔试题算法篇3 选择法: 现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。 #include void SelectSort(int* pData,int Count) { int iTemp; int iPos; for(int i=0;i { iTemp = pData[i]; iPos = i; for(int j=i+1;j { if(pData[j] { iTemp = pData[j]; iPos = j; } } pData[iPos] = pData[i]; pData[i] = iTemp; } } void main { int data = {10,9,8,7,6,5,4}; SelectSort(data,7); for (int i=0;i<7;i++) cout< } 倒序(最糟情况) 第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次) 第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次) 第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次) 循环次数:6次 交换次数:2次 其他: 第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次) 第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次) 第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。 所以,在数据较乱的时候,可以减少一定的交换次数。 |
随便看 |
|
范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。