标题 | 高一生物知识点总结 |
范文 | 高一生物知识点总结(通用35篇) 高一生物知识点总结 篇1(一)走近细胞 一、比较原核与真核细胞(多样性) 原核细胞真核细胞 细胞较小(1—10um)较大(10——100um) 细胞核无成形的细胞核,核物质集中在核区。无核膜,无核仁。DNA不和蛋白质结合有成形的真正的细胞核。有核膜,有核仁。DNA不和蛋白质结合成染色体 细胞质除核糖体外,无其他细胞器有各种细胞器 细胞壁有。但成分和真核不同,主要是肽聚糖植物细胞、真菌细胞有,动物细胞无 代表放线菌、细菌、蓝藻、支原体真菌、植物、动物 二、生命系统的层次性 植:营养、保护、机械、输导植:根、茎、叶 细胞组织分泌器官花、果、种 动:上皮、结缔、肌肉、神经动:心、肝…… 运动、循环 消化、呼吸病毒 系统(动)个体单细胞种群群落 泌尿、生殖多细胞 神经、内分泌 非生物因素Ⅰ号 生态系统生产者生物圈 生物因素消费者Ⅱ号 分解者 三、细胞学说内容(统一性) ○从人体的解剖和观察入手:维萨里、比夏 ○显微镜下的重要发明:虎克、列文虎克 ○理论思维和科学实验的结合:施来登、施旺 1、细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。 2、细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 3、新细胞可以从老细胞中产生。 ○在修正中前进:细胞通过产生新的细胞。 注:现代生物学的三大基石 1、1838—1839年细胞学说 2、1859年达尔文进化论 3、1866年孟德尔遗传学 四、结论 除病毒以外,细胞是生物体结构和功能的基本单位,也是地球上最基本的生命系统。 (二)组成细胞的分子 基本:C、H、O、N(90%) 大量:C、H、O、N、P、S、(97%)K、Ca、Mg 元素微量:Fe、Mo、Zn、Cu、B、Mo等 (20种)最基本:C,占干重的48。4%,生物大分子以碳链为骨架 物质说明生物界与非生物界的统一性和差异性。 基础水:主要组成成分;一切生命活动离不开水 无机物无机盐:对维持生物体的生命活动有重要作用 化合物蛋白质:生命活动(或性状)的主要承担者/体现者 核酸:携带遗传信息 有机物糖类:主要的能源物质 脂质:主要的储能物质 一、蛋白质(占鲜重7—10%,干重50%) 结构元素组成C、H、O、N,有的还有P、S、Fe、Zn、Cu、B、Mn、I等 单体氨基酸(约20种,必需8种,非必需12种) 化学结构由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。 多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。 高级结构多肽链形成不同的空间结构,分二、三、四级。 结构特点由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。 功能○蛋白质的结构多样性决定了它的特异性/功能多样性。 1、构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质; 2、有些蛋白质有催化作用:如各种酶; 3、有些蛋白质有运输作用:如血红蛋白、载体蛋白; 4、有些蛋白质有调节作用:如胰岛素、生长激素等; 5、有些蛋白质有免疫作用:如抗体。 备注○连接两个氨基酸分子的键(—NH—CO—)叫肽键。 ○各种蛋白质在结构上所具有的共同特点(通式): 1、每种氨基酸至少都含有一个氨基和一个羧基连同一碳原子上; 2、各种氨基酸的区别在于R基的不同。 ○变性(熟鸡蛋)&盐析&凝固(豆腐) 计算○由N个aa形成的一条肽链围成环状蛋白质时,产生水/肽键N个; ○N个aa形成一条肽链时,产生水/肽键N—1个; ○N个aa形成M条肽链时,产生水/肽键N—M个; ○N个aa形成M条肽链时,每个aa的平均分子量为α,那么由此形成的蛋白质 的分子量为N×α—(N—M)×18; 二、核酸 一切生物的遗传物质,是遗传信息的载体,是生命活动的控制者。 元素组成C、H、O、N、P等 分类脱氧核糖核酸(DNA双链)核糖核酸(RNA单链) 单体 成分磷酸H3PO4 五碳糖脱氧核糖核糖 含氮 碱基A、G、C、TA、G、C、U 功能主要的遗传物质,编码、复制遗 传信息,并决定蛋白质的合成将遗传信息从DNA传递给 蛋白质。 存在主要存在于细胞核,少量在线粒 体和叶绿体中。绿主要存在于细胞质中。吡罗红 △每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。 三、糖类和脂质 元素类别存在生理功能 糖类C、H、O单糖核糖C5H10O5主细胞质核糖核酸的组成成分; 脱氧核糖C4H10O5主细胞核脱氧核糖核酸的组成成分; 六碳糖:葡萄糖 C6H12O6、果糖等主细胞质是生物体进行生命活动的重要能源物质(70%以上); 二糖 C12H22O11麦芽糖、蔗糖植物 乳糖动物 多糖淀粉、纤维素植物(细胞壁的组成成分), 重要的储存能量的物质; 糖原(肝、肌)动物 脂质C、H、O 有的还有N、P脂肪动、植物储存能量、维持体温恒定; 类脂/磷脂脑、豆构成生物膜的重要成分; 固醇胆固醇动物动物的重要成分; 性激素促性器官发育和第二性征; 维生素D促进钙、磷的吸收和利用; △组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。 四、鉴别实验 试剂成分实验现象常用材料 蛋白质双缩脲A:0。1g/mLNaOH紫色大豆 鸡蛋 B:0。01g/mLCuSO4 脂肪苏丹Ⅲ橘花生 还原糖班氏(加热)砖红色沉淀苹果、梨、白萝卜 淀粉碘液I2蓝色马铃薯 ○具有还原性的糖:葡萄糖、麦芽糖、果糖 高一生物知识点总结 篇21、分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。 2、自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。 3、两条遗传基本规律的精髓是:遗传的不是性状的本身,而是控制性状的遗传因子。 4、孟德尔成功的原因:正确的选用实验材料;现研究一对相对性状的遗传,再研究两对或多对性状的遗传;应用统计学方法对实验结果进行分析;基于对大量数据的分析而提出假说,再设计新的实验来验证。 5、孟德尔对分离现象的原因提出如下假说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞—配子时,成对的遗传因子彼此分离,分别进入不同的配子中;受精时,雌雄配子的结合是随机的。 6、减数是进行有性生殖的生物,在产生成熟的生殖细胞时进行的染色体数目减半的细胞。在减数的过程中,染色体只复制一次,而细胞两次。减数的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。 7、配对的两条染色体,形状大小一般相同,一条来自父方,一条来自母方,叫做同源染色体。同源染色体两两配对的现象叫做联会。联会后的每对同源染色体含有四条染色单体,叫做四分体。 8、减数过程中染色体数目减半发生在减数第一次。 9、受精卵中的染色体数目又恢复到体细胞中的数目,其中有一半的染色体来自精子(父方),另一半来自卵细胞(母方)。 10、基因分离的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立的随着配子遗传给后代。 11、基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和自由组合是互不干扰的;在减数过程中,在同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。 12、红绿色盲、抗维生素D佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。 13、因为绝大多数生物的遗传物质是DNA,只有少数生物(如HIV病毒)的遗传物质是RNA,所以说DNA是主要的遗传物质。 14、DNA分子双螺旋结构的主要特点:DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构;DNA分子中的脱氧核苷酸和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。 15、碱基之间的这种一一对应的关系,叫做碱基互补配对原则。 16、DNA分子的复制是一个边解旋边复制的过程,复制需要模板、原料、能量和酶等基本条件。DNA分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证了复制能够准确地进行。 17、遗传信息蕴藏在4种碱基的排列顺序之中,碱基排列顺序的千变万化,构成了DNA分子的多样性,而碱基的特定的排列顺序,又构成了每一个DNA分子的特异性。 18、基因是有遗传效应的DNA分子片断。 19、RNA是在细胞核中,以DNA的一条链为模板合成的,这一过程称为转录。 20、游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。 21、基因通过控制酶的合成来控制代谢过程,进而控制生物的性状。 22、基因还能通过控制蛋白质的结构直接控制生物体的性状。 23、基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细的调控着生物体的性状。 24、中心法则描述了遗传信息的流动方向,主要内容是:遗传信息可以从DNA流向DNA,即DNA的自我复制,也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从蛋白质传递到蛋白质,也不能从蛋白质流向DNA或RNA。 25、修改后的中心法则增加了遗传信息从RNA流向RNA,从RNA流向DNA这两条途径。 26、基因与性状之间并不是简单的一一对应关系。有些性状是由多个基因共同决定的,有的基因可以决定或影响多种性状。一般来说,性状是基因与环境共同作用的结果。 27、DNA分子发生碱基对的替换、增添、缺失,进而引起的基因结构的改变,叫做基因突变。 28、由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。 29、基因突变是随机发生的、不定向的。 30、在自然状态下,基因突变的频率是很低的。 高一生物知识点总结 篇31、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统 细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞 2、光学显微镜的操作步骤: 对光→低倍物镜观察→移动视野中央(偏哪移哪)→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜 3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核 ①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻 ②真核细胞:有核膜,有染色体,如酵母菌,各种动物 注:病毒无细胞结构,但有DNA或RNA 4、蓝藻是原核生物,自养生物 5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质 6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折 7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同 8、组成细胞的元素 ①大量无素:C、H、O、N、P、S、K、Ca、Mg ②微量无素:Fe、Mn、B、Zn、Mo、Cu ③主要元素:C、H、O、N、P、S ④基本元素:C ⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O 9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的 化合物为蛋白质。 10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应 (2)还原糖鉴定材料不能选用甘蔗 (3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液) 11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同 12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键 13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数 14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别 15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因 高一生物知识点总结 篇4细胞中的糖类和脂质细胞中的糖类——主要的能源物质 糖类的分类,分布及功能: 种类、分布、功能 单糖、五碳糖、核糖 (C5H10O4)、细胞中都有、组成RNA的成分 脱氧核糖(C5H10O5)、细胞中都有、组成DNA的成分六碳糖(C6H12O6)、葡萄糖、细胞中都有、主要的能源物质果糖、植物细胞中、提供能量、半乳糖、动物细胞中、提供能量 二糖 (C12H22O11)、麦芽糖、发芽的小麦、谷控中含量丰富、都能提供能量蔗糖、甘蔗、甜菜中含量丰富、乳糖、人和动物的乳汁中含量丰富、多糖(C6H10O5)n、淀粉、植物粮食作物的种子、根或茎等储藏器官中、储存能量、纤维素、植物细胞的细胞壁中、支持保护细胞、肝糖原 糖原 肌糖原、动物的肝脏中、储存能量调节血糖 动物的肌肉组织中、储存能量 细胞中的脂质脂质的分类 脂肪:储能,保温,缓冲减压 磷脂:构成细胞膜和细胞器膜的主要成分胆固醇、固醇、性激素 维生素D 脂质的分类,分布及功能 1、脂肪(C、H、O)存在人和动物体内的皮下,大网膜和肠系膜等部位。动物细胞中良好的储能物质与糖类相同质量的脂肪储存能量是糖类的2倍。 功能:①保温②减少内部器官之间摩擦③缓冲外界压力 2、磷脂构成细胞膜以及各种细胞器膜重要成分。 分布:人和动物的脑、卵细胞、肝脏、大豆的种子中含量丰富。 3、固醇 包括:①胆固醇------构成细胞膜重要成分;参与人体血液中脂质的运输。 ②性激素------促进人和动物官的发育以及生殖细胞的形成,激发并维持第二性征 ③维生素D------促进人和动物肠道对Ca和P的吸收。 单体和多聚体的概念:生物大分子如蛋白质是由许多氨基酸连接而成的。核酸是由许多核苷酸连接而成的。氨基酸、核苷酸、单糖分别是蛋白质、核酸和多糖的单体,而这些大分子分别是单体的多聚体 生物大分子的形成:C形成4个化学键→、成千上万原子形成→、碳链、→、单体、→、生物大分子 高一生物知识点总结 篇5一、细胞种类: 根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞。 二、原核细胞和真核细胞的比较: 1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA不与蛋白质结合;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。 2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。 3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。 4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。 三、细胞学说的建立: 1、1665英国人虎克用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。 2、1680荷兰人列文虎克,首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。 3、19世纪30年代德国人施莱登、施旺提出:一切植物、动物都是由细胞组成的。细胞是一切动植物的基本单位。这一学说即“细胞学说”,它揭示了生物体结构的统一性。 高一生物知识点总结 篇6分离各种细胞器的方法: 细胞器是细胞质中具有特定形态结构和功能的微器官,也称为拟器官或亚结构。其中质体与液泡在光镜下即可分辨,其他细胞器一般需借助电子显微镜方可观察。细胞器(organelle)一般认为是散布在细胞质内具有一定形态和功能的微结构或微器官。但对于“细胞器”这一名词的范围,还存在着某些不同意见。细胞中的细胞器主要有:线粒体、内质网、中心体、叶绿体,高尔基体、核糖体等。它们组成了细胞的基本结构,使细胞能正常的工作,运转。 细胞器的结构与功能: (一)双层膜 1、线粒体 (1)结构:内膜向内折叠形成嵴,其内含有少量的DNA与RNA,可复制 (2)功能:进行的主要场所 2、叶绿体 (1)结构:其内也含有少量的DNA与RNA,可复制; 基质中含有酶,基粒中了有酶还有色素 (2)功能:进行的场所 (3)存在:绿色植物的和幼茎皮层细胞 (二)无膜结构 3、中心体 (1)存在:动物和低等中 (2)功能:与细胞的有丝分裂有关 4、核糖体 分类(1)游离型核糖体:合成胞内蛋白(血红蛋白,与有关的酶) (2)附着型核糖体:合成分泌蛋白(消化酶,抗体,一部分激素) 单层膜 5、内质网 分为(1):分泌蛋白的加工合成及运输 (2)光面内质网:合成糖类脂质等有机物 6、高尔基体 (1)中:进一步对分泌蛋白加工,分类和运输 (2)中:与细胞壁的形成有关 7、液泡 (1)存在:中 (2)功能:调节细胞内环境;充盈的液泡可使植物细胞保持坚挺 8、溶酶体 (1)其内含多种水解酶 (2)功能:消化分解细胞中衰老损伤的细胞器;吞噬并杀死侵入细胞的病毒病菌 高一生物知识点总结 篇7【第一节从生物圈到细胞】 一、相关概念、 细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统 生命系统的结构层次:细胞→组织→器官→系统(植物没有系统)→个体→种群 →群落→生态系统→生物圈 二、病毒的相关知识: 1、病毒(Virus)是一类没有细胞结构的生物体。主要特征: ①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见; ②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒; ③、专营细胞内寄生生活; ④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。 2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。 3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。 高一生物知识点总结 篇81.有氧呼吸过程 2.无氧呼吸过程 (1)第一阶段与有氧呼吸完全相同。 (2)第二阶段是第一阶段产生的[H]将丙酮酸还原为C2H5OH和CO2或乳酸的过程。不同生物无氧呼吸的产物不同,是由于催化反应的酶不同。 应用指南 1.不同生物无氧呼吸的产物不同,其原因在于催化反应的酶不同。动物和人体无氧呼吸的产物是乳酸。微生物的无氧呼吸称为发酵,但动植物的无氧呼吸不能称为发酵。2.原核生物无线粒体,但有些原核生物仍可进行有氧呼吸。 3.有氧呼吸的三个阶段均有ATP产生;无氧呼吸只在第一阶段产生ATP。其余的能量储存在分解不彻底的氧化产物——酒精或乳酸中。 4.有氧呼吸过程中H2O既是反应物(第二阶段利用),又是生成物(第三阶段生成),且生成的H2O中的氧全部来源于O2。 5.有H2O生成一定是有氧呼吸,有CO2生成一定不是乳酸发酵。 6.呼吸作用产生的能量大部分以热能形式散失,对动物可用于维持体温。 7.水稻等植物长期水淹后烂根的原因:无氧呼吸的产物酒精对细胞有毒害作用。玉米种子烂胚的原因:无氧呼吸产生的乳酸对细胞有毒害作用。 考点2根据CO 释放量和O消耗量判断细胞呼吸状况(底物为葡萄糖) 【特别提醒】 1.CO2释放量、O2吸收量、酒精量都是指物质的量,单位是摩尔。 2.以上的根据是葡萄糖有氧呼吸和无氧呼吸的方程式,不包括其他有机物质。考点3影响细胞呼吸的因素及其应用1.内因:遗传因素(决定酶的种类和数量) (1)不同种类的植物呼吸速率不同,如旱生植物小于水生植物,阴生植物小于阳生植物。 (2)同一植物在不同的生长发育时期呼吸速率不同,如幼苗、开花期呼吸速率升高,成熟期呼吸速率下降。(3)同一植物的不同器官呼吸速率不同,如生殖器官大于营养器官。2.外因——环境因素(1)温度 ①温度影响呼吸作用,主要是通过影响呼吸酶的活性来实现的。呼吸速率与温度的关系如下图。 ②生产上常用这一原理在低温下贮藏水果、蔬菜。大大棚蔬菜的栽培过程中夜间适当降低温度,降低呼吸作用,减少有机物的消耗,提高产量。(2)O2的浓度 ①在O2浓度为零时只进行无氧呼吸;浓度为10%以下,既进行有氧呼吸又进行无氧呼吸;浓度为10%以上,只进行有氧呼吸。(如图) ②生产中常利用降低氧的浓度抑制呼吸作用,减少有机物消耗这一原理来延长蔬菜、水果保鲜时间。 (3)CO2 CO2是呼吸作用的产物,对细胞呼吸有抑制作用,实验证明,在CO2浓度升高到1%~10%时,呼吸作用明显被抑制。(如图) (4)水 在一定范围内,呼吸速率随含水量的增加而加快,随含水量的减少而减慢。 考点4实验面面观:探究酵母菌细胞呼吸的方式 1.实验原理 (1)酵母菌在有氧和无氧的条件下都能生存,属于兼性厌氧菌。酵母菌进行有氧呼吸能产生大量的CO2,在进行无氧呼吸时能产生酒精和CO2。 (2)CO2可使澄清的石灰水变混浊,也可使溴麝香草酚蓝水溶液由蓝变绿再变黄。(3)橙色的重铬酸钾溶液,在酸性条件下可与乙醇发生化学反应,变成灰绿色。2.实验流程 酵母菌利用葡萄糖产生酒精是在有氧还是无氧的 提出问题:条件下进行的?酵母菌在有氧和无氧条件下细胞 呼吸的产物是什么? 作出假设: 针对上述问题,根据已有的知识和生活经验?如酵,母菌可用于酿酒、发面等?作出合理的假设 【特别提醒】 1.通入A瓶的空气中不能含有CO2,以保证使第三个锥形瓶中的澄清石灰水变浑浊是由酵母菌有氧呼吸产生的CO2所致 2.B瓶应封口放置一段时间,待酵母菌将B瓶中的氧气消耗完,再连通盛有澄清石灰水的锥形瓶,确保通入澄清石灰水中的CO2是由无氧呼吸产生的。【方法例析】对比实验和对照实验 1.对比实验:不设置对照组,而是设置两个或两个以上的实验组,通过对实验结果的比较分析,来探究某种因素与实验对象的关系,这样的实验叫对比实验,这样的对照方法也叫相互对照。如探究酵母菌细胞呼吸方式的实验,有氧和无氧条件下的实验结果都是未知的,通过两个实验结果的对比可以得出氧气对细胞呼吸的影响。 2.对照实验:设置对照组和实验组,对照组的实验结果一般是已知的,对照组主要起消除或减少实验误差,鉴别实验中的处理因素和非处理因素的差异等作用。常用的对照方式有:(1)空白对照:空白对照是不给对照组以任何处理因素。 (2)条件对照:指虽给实验对象施以某种实验处理,但这种处理是作为对照意义的,或者说这种处理不是实验假设所给定的实验变量意义的。 (3)自身对照:指实验与对照在同一对象上进行,即不另设对照组,向一组实验对象施加一个或数个因子,然后测量其前后的变化,这种实验又叫单组实验法。 (4)相互对照:不设对照组,通过几个实验组相互对照,这种实验也就是对比实验。 高一生物知识点总结 篇91、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统 细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞 2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜 3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核 ①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻 ②真核细胞:有核膜,有染色体,如酵母菌,各种动物 注:病毒无细胞结构,但有DNA或RNA 4、蓝藻是原核生物,自养生物 5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质 6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折 高一生物知识点总结 篇101、T2噬菌体:这是一种寄生在大肠杆菌里的病毒。它是由蛋白质外壳和存在于头部内的DNA所构成。它侵染细菌时可以产生一大批与亲代噬菌体一样的子代噬菌体。 2、细胞核遗传:染色体是主要的遗传物质载体,且染色体在细胞核内,受细胞核内遗传物质控制的遗传现象。 3、细胞质遗传:线粒体和叶绿体也是遗传物质的载体,且在细胞质内,受细胞质内遗传物质控制的遗传现象。 4、证明DNA是遗传物质的实验关键是:设法把DNA与蛋白质分开,单独直接地观察DNA的作用。 5、肺炎双球菌的类型: ①、R型(英文Rough是粗糙之意),菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。 ②、S型(英文Smooth是光滑之意):菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。如果用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡。 格里菲斯实验:格里菲斯用加热的办法将S型菌杀死,并用死的S型菌与活的R型菌的混合物注射到小鼠身上。小鼠死了。(由于R型经不起死了的S型菌的DNA(转化因子)的诱惑,变成了S型)。 6、艾弗里实验说明DNA是“转化因子”的原因:将S型细菌中的多糖、蛋白质、脂类和DNA等提取出来,分别与R型细菌进行混合;结果只有DNA与R型细菌进行混合,才能使R型细菌转化成S型细菌,并且的含量越高,转化越有效。 7、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。 8、噬菌体侵染细菌的实验: ①噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。 ②DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 ③结论:进入细菌的物质,只有DNA,并没有蛋白质,就能形成新的噬菌体。新的噬菌体中的蛋白质不是从亲代连续下来的,而是在噬菌体DNA的作用下合成的。说明了遗传物质是DNA,不是蛋白质。此实验还证明了DNA能够自我复制,在亲子代之间能够保持一定的连续性,也证明了DNA能够控制蛋白质的合成。 9、肺炎双球菌的转化实验和噬菌体侵染细菌的实验只证明DNA是遗传物质(而没有证明它是主要遗传物质) 10、遗传物质应具备的特点: ①具有相对稳定性 ②能自我复制 ③可以指导蛋白质的合成 ④能产生可遗传的变异。 11、绝大多数生物的遗传物质是DNA,只有少数病毒(如烟草花叶病病毒)的遗传物质是RNA,因此说DNA是主要的遗传物质。病毒的遗传物质是DNA或RNA。 12、①遗传物质的载体有:染色体、线绿体、叶绿体。 ②遗传物质的主要载体是染色体。 高一生物知识点总结 篇11应激性(生物个体对外界的刺激会产生一定反应,应激性是动态过程)与适应性(包含应激性,也含静态的适应特征,例如动植物的保护色),它们都由基因遗传性所决定。 生物工程包含三大部分:分别是基因工程、生物细胞工程(上游技术)和生物发酵工程、酶工程(下游技术) 生命的共性包含共同的物质基础(化合物、元素)、核苷酸种类、氨基酸种类、RNA和DNA的排列结构方式、基因结构(非编码区和编码区)、遗传密码等。 元素含量占细胞鲜重最多是氧。含量从多少到分别是O、C、H、N、P、S,细胞中最最基本元素是C。 生物体中无机盐的功能和作用:如缺铁导致红细胞运输氧气能力下降,体现维持细胞的生命活动作用;缺铁导致人贫血,体现维持生物体的生命活动作用。其次构成复杂化合物的作用。 高一生物知识点总结 篇12第四章细胞的物质输入和输出 第一节物质跨膜运输的实例 一、渗透作用 (1)渗透作用:指水分子(或其他溶剂分子)通过半透膜的扩散。 (2)发生渗透作用的条件: ①是具有半透膜 ②是半透膜两侧具有浓度差。 二、细胞的吸水和失水(原理:渗透作用) 1、动物细胞的吸水和失水 外界溶液浓度细胞质浓度时,细胞失水皱缩 外界溶液浓度=细胞质浓度时,水分进出细胞处于动态平衡 2、植物细胞的吸水和失水 细胞内的液体环境主要指的是液泡里面的细胞液。 原生质层:细胞膜和液泡膜以及两层膜之间的细胞质 外界溶液浓度>细胞液浓度时,细胞质壁分离 外界溶液浓度细胞液浓度 2、质壁分离产生的原因: 内因:原生质层伸缩性大于细胞壁伸缩性 外因:外界溶液浓度>细胞液浓度 1、植物吸水方式有两种: (1)吸帐作用(未形成液泡)如:干种子、根尖分生区 (2)渗透作用(形成液泡) 一、物质跨膜运输的其他实例 1、对矿质元素的吸收 逆相对含量梯度——主动运输 对物质是否吸收以及吸收多少,都是由细胞膜上载体的种类和数量决定。 2、细胞膜是一层选择透过性膜,水分子可以自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过。 二、比较几组概念 扩散:物质从高浓度到低浓度的运动叫做扩散(扩散与过膜与否无关) (如:O2从浓度高的地方向浓度低的地方运动) 渗透:水分子或其他溶剂分子通过半透膜的扩散又称为渗透 (如:细胞的吸水和失水,原生质层相当于半透膜) 半透膜:物质的透过与否取决于半透膜孔隙直径的大小 (如:动物膀胱、玻璃纸、肠衣、鸡蛋的卵壳膜等) 选择透过性膜:细胞膜上具有载体,且不同生物的细胞膜上载体种类和数量不同,构成了对不同物质吸收与否和吸收多少的选择性。 (如:细胞膜等各种生物膜) 第二节 生物膜的流动镶嵌模型 一、探索历程 二、流动镶嵌模型的基本内容 ▲磷脂双分子层构成了膜的基本支架 ▲蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层 ▲磷脂双分子层和大多数蛋白质分子可以运动糖蛋白(糖被) 组成:由细胞膜上的蛋白质与糖类结合形成。 作用:细胞识别、免疫反应、血型鉴定、保护润滑等。 第三节物质跨膜运输的方式 一、被动运输:物质进出细胞,顺浓度梯度的扩散,称为被动运输。 (1)自由扩散:物质通过简单的扩散作用进出细胞 (2)协助扩散:进出细胞的物质借助载体蛋白的扩散 二、主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。 方向 载体 能量 举例 自由扩散 高→低 不需要 不需要 水、CO2、O2、N2、乙醇、甘油、苯、脂肪酸、维生素等 协助扩散 高→低 需要 不需要 葡萄糖进入红细胞 主动运输 低→高 需要 需要 氨基酸、K+、Na+、Ca+等离子、葡萄糖进入小肠上皮细胞 三、大分子物质进出细胞的方式:胞吞、胞吐 第五章细胞的能量供应和利用 第一节降低反应活化能的酶 一、细胞代谢与酶 1、细胞代谢的概念:细胞内每时每刻进行着许多化学反应,统称为细胞代谢. 2、酶的发现:发现过程,发现过程中的科学探究思想,发现的意义 3、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。 4、酶的特性:专一性,高效性,作用条件较温和 5、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。 二、影响酶促反应的因素(难点) 1、 底物浓度 2、 酶浓度 3、 PH值:过酸、过碱使酶失活 4、 温度:高温使酶失活。低温降低酶的活性,在适宜温度下酶活性可以恢复。 三、实验 1、 比较过氧化氢酶在不同条件下的分解(过程见课本P79) 实验结论:酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多 控制变量法:变量、自变量、因变量、无关变量的定义。 对照实验:除一个因素外,其余因素都保持不变的实验。 2、 影响酶活性的条件(要求用控制变量法,自己设计实验) 建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究PH对酶活性的影响。 第二节细胞的能量“通货”——ATP 一、什么是ATP?是细胞内的一种高能磷酸化合物,中文名称叫做三磷酸腺苷 二、结构简式:A-P~P~P A代表腺苷 P代表磷酸基团 ~代表高能磷酸键 三、ATP和ADP之间的相互转化 ADP + Pi+ 能量 ATP ATP ADP + Pi+ 能量 ADP转化为ATP所需能量来源: 动物和人:呼吸作用 绿色植物:呼吸作用、光合作用 第三节ATP 的主要来源——细胞呼吸 1、概念:有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。 2、有氧呼吸 总反应式:C6H12O6 +6O2 6CO2 +6H2O +大量能量 第一阶段:细胞质基质 C6H12O6 2丙酮酸+少量[H]+少量能量 第二阶段:线粒体基质 2丙酮酸+6H2O 6CO2+大量[H] +少量能量 第三阶段:线粒体内膜 24[H]+6O2 12H2O+大量能量 3、无氧呼吸产生酒精:C6H12O6 2C2H5OH+2CO2+少量能量 发生生物:大部分植物,酵母菌 产生乳酸:C6H12O6 2乳酸+少量能量 发生生物:动物,乳酸菌,马铃薯块茎,玉米胚 反应场所:细胞质基质注意:无机物的无氧呼吸也叫发酵,生成乳酸的叫乳酸发酵,生成酒精的叫酒精发酵 讨论: 1 有氧呼吸及无氧呼吸的能量去路 有氧呼吸:所释放的能量一部分用于生成ATP,大部分以热能形式散失了。 无氧呼吸:能量小部分用于生成ATP,大部分储存于乳酸或酒精中 2 有氧呼吸过程中氧气的去路:氧气用于和[H]生成水 第四节 能量之源——光与光合作用 一、 捕获光能的色素 叶绿素a(蓝绿色) 叶绿素 叶绿素b (黄绿色) 绿叶中的色素 胡萝卜素 (橙黄色) 类胡萝卜素 叶黄素(黄色) 叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。 白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。 二、实验——绿叶中色素的提取和分离 1 实验原理:绿叶中的色素都能溶解在层析液中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。 2 方法步骤中需要注意的问题:(步骤要记准确) (1)研磨时加入二氧化硅和碳酸钙的作用是什么? 二氧化硅有助于研磨得充分,碳酸钙可防止研磨中的色素被破坏。 (2)实验为何要在通风的条件下进行?为何要用培养皿盖住小烧杯?用棉塞塞紧试管口? 因为层析液中的丙酮是一种有挥发性的有毒物质。 (3)滤纸上的滤液细线为什么不能触及层析液? 防止细线中的色素被层析液溶解 (4)滤纸条上有几条不同颜色的色带?其排序怎样?宽窄如何? 有四条色带,自上而下依次是橙黄色的胡萝卜素,黄色的叶黄素,蓝绿色的叶绿素a,黄绿色的叶绿素b。最宽的是叶绿素a,最窄的是胡萝卜素。 三、捕获光能的结构——叶绿体 结构:外膜,内膜,基质,基粒(由类囊体构成) 与光合作用有关的酶分布于基粒的类囊体及基质中。 光合作用色素分布于类囊体的薄膜上。 四、光合作用的原理 1、光合作用的探究历程 2、光合作用的过程: (熟练掌握课本P103下方的图) 总反应式:CO2+H2O (CH2O)+O2 ,其中(CH2O)表示糖类。 根据是否需要光能,可将其分为光反应和暗反应两个阶段。 光反应阶段:必须有光才能进行 场所:类囊体薄膜上 反应式: 水的光解:H2O 1/2O2+2[H] ATP形成:ADP+Pi+光能 ATP 光反应中,光能转化为ATP中活跃的化学能 暗反应阶段:有光无光都能进行 场所:叶绿体基质 CO2的固定:CO2+C5 2C3 C3的还原:2C3+[H]+ATP (CH2O)+C5+ADP+Pi 暗反应中,ATP中活跃的化学能转化为(CH2O)中稳定的化学能 联系: 光反应为暗反应提供ATP和[H],暗反应为光反应提供合成ATP的原料ADP和Pi 五、影响光合作用的因素及在生产实践中的应用 (1)光对光合作用的影响 ①光的波长 叶绿体中色素的吸收光波主要在红光和蓝紫光。 ②光照强度 植物的光合作用强度在一定范围内随着光照强度的增加而增加,但光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增加 ③光照时间 光照时间长,光合作用时间长,有利于植物的生长发育。 (2)温度 温度低,光和速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光和速率降低。 生产上白天升温,增强光合作用,晚上降低室温,抑制呼吸作用,以积累有机物。 (3)CO2浓度 在一定范围内,植物光合作用强度随着CO2浓度的增加而增加,但达到一定浓度后,光合作用强度不再增加。 生产上使田间通风良好,供应充足的CO2 (4)水分的供应当植物叶片缺水时,气孔会关闭,减少水分的散失,同时影响CO2进入叶内,暗反应受阻,光合作用下降。 生产上应适时灌溉,保证植物生长所需要的水分。 六、化能合成作用 概念:自然界中少数种类的细菌,虽然细胞内没有叶绿素,不能进行光合作用,但是能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用,叫做化能合成作用,这些细菌也属于自养生物。 如:硝化细菌,不能利用光能,但能将土壤中的NH3氧化成HNO2,进而将HNO2氧化成HNO3。 硝化细菌能利用这两个化学反应中释放出来的化学能,将CO2和水合成为糖类,这些糖类可供硝化细菌维持自身的生命活动. 举例:硝化细菌、硫细菌、铁细菌、氢细菌 自养型生物:绿色植物、光合细菌、化能合成性细菌 异养型生物:动物、人、大多数细菌、真菌 高一生物知识点总结 篇13第二章 细胞的化学组成 第一节 细胞中的原子和分子 一、组成细胞的原子和分子 1、细胞中含量最多的6种元素是C、H、O、N、P、Ca(98%)。 2、组成生物体的基本元素:C元素。(碳原子间以共价键构成的碳链,碳链是生物构成生物大分子的基本骨架,称为有机物的碳骨架。) 3、缺乏必需元素可能导致疾病。如:克山病(缺硒) 4、生物界与非生物界的统一性和差异性 统一性:组成生物体的化学元素,在无机自然界都可以找到,没有一种元素是生物界特有的。 差异性:组成生物体的化学元素在生物体和自然界中含量相差很大。 二、细胞中的无机化合物:水和无机盐 1、水:(1)含量:占细胞总重量的60%-90%,是活细胞中含量是最多的物质。 (2)形式:自由水、结合水 自由水:是以游离形式存在,可以自由流动的水。作用有①良好的溶剂;②参与细胞内生化反应;③物质运输;④维持细胞的形态;⑤体温调节 (在代谢旺盛的细胞中,自由水的含量一般较多) 结合水:是与其他物质相结合的水。作用是组成细胞结构的重要成分。 (结合水的含量增多,可以使植物的抗逆性增强) 2、无机盐 (1)存在形式:离子 (2)作用 ①与蛋白质等物质结合成复杂的化合物。 (如Mg2+是构成叶绿素的成分、Fe2+是构成血红蛋白的成分、I-是构成甲状腺激素的成分。 ②参与细胞的各种生命活动。(如钙离子浓度过低肌肉抽搐、过高肌肉乏力) 第二节 细胞中的生物大分子 一、糖类 1、元素组成:由C、H、O 3种元素组成。 2、分类 概 念种 类分 布主 要 功 能 单糖不能水解的糖核糖动植物细胞组成核酸的物质 脱氧核糖 葡萄糖细胞的重要能源物质 二糖水解后能够生成二分子单糖的糖蔗糖植物细胞 麦芽糖 乳糖动物细胞 多糖水解后能够生成许多个单糖分子的糖淀粉植物细胞植物细胞中的储能物质 纤维素植物细胞壁的基本组成成分 糖原动物细胞动物细胞中的储能物质 附:二糖与多糖的水解产物: 蔗糖→1葡萄糖+1果糖 麦芽糖→2葡萄糖 乳糖→1葡萄糖+ 1半乳糖 淀粉→麦芽糖→葡萄糖 纤维素→纤维二糖→葡萄糖 糖原→葡萄糖 3、功能:糖类是生物体维持生命活动的主要能量来源。 (另:能参与细胞识别,细胞间物质运输和免疫功能的调节等生命活动。) 4.糖的鉴定: (1)淀粉遇碘液变蓝色,这是淀粉特有的颜色反应。 (2)还原性糖(单糖、麦芽糖和乳糖)与斐林试剂在隔水加热条件下,能够生成砖红色沉淀。 斐林试剂: 配制:0.1g/mL的NaOH溶液(2mL)+ 0.05g/mL CuSO4溶液(4-5滴) 使用:混合后使用,且现配现用。 二、脂质 1、元素组成:主要由C、H、O组成(C/H比例高于糖类),有些还含N、P 2、分类:脂肪、类脂(如磷脂)、固醇(如胆固醇、性激素、维生素D等) 3.功能: 脂肪:细胞代谢所需能量的主要储存形式。 类脂中的磷脂:是构成生物膜的重要物质。 固醇:在细胞的营养、调节、和代谢中具有重要作用。 4、脂肪的鉴定:脂肪可以被苏丹Ⅲ染液染成橘黄色。 (在实验中用50%酒精洗去浮色→显微镜观察→橘黄色脂肪颗粒) 三、蛋白质 1、元素组成:除C、H、O、N外,大多数蛋白质还含有S 2、基本组成单位:氨基酸(组成蛋白质的氨基酸约20种) 氨基酸结构通式: : 氨基酸的判断: ①同时有氨基和羧基 ②至少有一个氨基和一个羧基连在同一个碳原子上。 (组成蛋白质的20种氨基酸的区别:R基的不同) 3.形成:许多氨基酸分子通过脱水缩合形成肽键(-CO-NH-)相连而成肽链,多条肽链盘曲折叠形成有功能的蛋白质 二肽:由2个氨基酸分子组成的肽链。 多肽:由n(n≥3)个氨基酸分子以肽键相连形成的肽链。 蛋白质结构的多样性的原因:组成蛋白质多肽链的氨基酸的种类、数目、排列顺序的不同; 构成蛋白质的多肽链的数目、空间结构不同 4.计算: 一个蛋白质分子中肽键数(脱去的水分子数)=氨基酸数 - 肽链条数。 一个蛋白质分子中至少含有氨基数(或羧基数)=肽链条数 5.功能:生命活动的主要承担者。(注意有关蛋白质的功能及举例) 6.蛋白质鉴定:与双缩脲试剂产生紫色的颜色反应 双缩脲试剂:配制:0.1g/mL的NaOH溶液(2mL)和0.01g/mL CuSO4溶液(3-4滴) 使用:分开使用,先加NaOH溶液,再加CuSO4溶液。 四、核酸 1、元素组成:由C、H、O、N、P 5种元素构成 2、基本单位:核苷酸(由1分子磷酸+1分子五碳糖+1分子含氮碱基组成) 1分子磷酸 脱氧核苷酸 1分子脱氧核糖 (4种) 1分子含氮碱基(A、T、G、C) 1分子磷酸 核糖核苷酸 1分子核糖 (4种) 1分子含氮碱基(A、U、G、C) 3、种类:脱氧核糖核酸(DNA)和 核糖核酸(RNA) 种类英文缩写基本组成单位存在场所 脱氧核糖核酸DNA脱氧核苷酸(4种)主要在细胞核中 (在叶绿体和线粒体中有少量存在) 核糖核酸RNA核糖核苷酸(4种)主要存在细胞质中 4、生理功能:储存遗传信息,控制蛋白质的合成。 (原核、真核生物遗传物质都是DNA,病毒的遗传物质是DNA或RNA。) 第三章 细胞的结构和功能 第一节 生命活动的基本单位——细胞 一、细胞学说的建立和发展 发明显微镜的科学家是荷兰的列文虎克; 发现细胞的科学家是英国的胡克; 创立细胞学说的科学家是德国的施莱登和施旺。施旺、施莱登提出“一切动物和植物都是由细胞构成的,细胞是一切动植物的基本单位”。 在此基础上德国的魏尔肖总结出:“细胞只能来自细胞”,细胞是一个相对独立的生命活动的基本单位。这被认为是对细胞学说的重要补充。 二、光学显微镜的使用 1、方法: 先对光:一转转换器;二转聚光器;三转反光镜 再观察:一放标本孔中央;二降物镜片上方;三升镜筒仔细看 2、注意: (1)放大倍数=物镜的放大倍数×目镜的放大倍数 (2)物镜越长,放大倍数越大 目镜越短,放大倍数越大 “物镜—玻片标本”越短,放大倍数越大 (3)物像与实际材料上下、左右都是颠倒的 (4)高倍物镜使用顺序: 低倍镜→标本移至中央→高倍镜→大光圈,凹面镜→细准焦螺旋 (5)污点位置的判断:移动或转动法 第二节 细胞的类型和结构 一、细胞的类型 原核细胞:没有典型的细胞核,无核膜和核仁。如细菌、蓝藻、放线菌等原核生物的细胞。 真核细胞:有核膜包被的明显的细胞核。如动物、植物和真菌(酵母菌、霉菌、食用菌)等真核生物的细胞。 二、细胞的结构 1.细胞膜 (1)组成:主要为磷脂双分子层(基本骨架)和蛋白质,另有糖蛋白(在膜的外侧)。 (2)结构特点:具有一定的流动性(原因:磷脂和蛋白质的运动); 功能特点:具有选择通透性。 (3)功能:保护和控制物质进出 2.细胞壁:主要成分是纤维素,有支持和保护功能。 3.细胞质:细胞质基质和细胞器 (1)细胞质基质:为代谢提供场所和物质和一定的环境条件,影响细胞的形状、分裂、运动及细胞器的转运等。 (2)细胞器: 线粒体(双层膜):内膜向内突起形成“嵴”,细胞有氧呼吸的主要场所(第二、三阶段),含少量DNA。 叶绿体(双层膜):只存在于植物的绿色细胞中。类囊体上有色素,类囊体和基质中含有与光合作用有关的酶,是光合作用的场所。含少量的DNA。 内质网(单层膜):是有机物的合成“车间”,蛋白质运输的通道。 高尔基体(单层膜):动物细胞中与分泌物的形成有关,植物中与有丝分裂细胞壁的形成有关。 液泡(单层膜):泡状结构,成熟的植物有大液泡。功能:贮藏(营养、色素等)、保持细胞形态,调节渗透吸水。 核糖体(无膜结构):合成蛋白质的场所。 中心体(无膜结构):由垂直的两个中心粒构成,与动物细胞有丝分裂有关。 小结: ★ 双层膜的细胞器:线粒体、叶绿体 ★ 单层膜的细胞器:内质网、高尔基体、液泡 ★非膜的细胞器:核糖体、中心体; ★ 含有少量DNA的细胞器:线粒体、叶绿体 ★ 含有色素的细胞器:叶绿体、液泡 ★动、植物细胞的区别:动物特有中心体;高等植物特有细胞壁、叶绿体、液泡。 4.细胞核 (1)组成:核膜、核仁、染色质 (2)核膜:双层膜,有核孔(细胞核与细胞质之间的物质交换通道,RNA、蛋白质等大分子进出必须通过核孔。) (3)核仁:在细胞有丝分裂中周期性的消失(前期)和重建(末期) (4)染色质:被碱性染料染成深色的物质,主要由DNA和蛋白质组成 染色质和染色体的关系:细胞中同一种物质在不同时期的两种表现形态 (5)功能:是遗传物质DNA的储存和复制的主要场所,是细胞遗传特性和细胞代谢活动的控制中心。 (6)原核细胞与真核细胞根本区别:是否具有成形的细胞核(是否具有核膜) 5.细胞的完整性:细胞只有保持以上结构完整性,才能完成各种生命活动。 第三节 物质的跨膜运输 一、物质跨膜运输的方式: 1、小分子物质跨膜运输的方式: 方式浓度载体能量举例意义 被动运输简单 扩散高→低O2、CO2、水、乙醇、甘油、脂肪酸只能从高到低被动地吸收或排出物质 易化 扩散高→低√×葡萄糖进入红细胞 主动 运输低→高√√各种离子,小肠吸收葡萄糖、氨基酸,肾小管重吸收葡萄糖一般从低到高主动地吸收或排出物质,以满足生命活动的需要。 2、大分子和颗粒性物质跨膜运输的方式: 大分子和颗粒性物质通过内吞作用进入细胞,通过外排作用向外分泌物质。 二、实验:观察植物细胞的质壁分离和复原 实验原理:原生质层(细胞膜、液泡膜、两层膜之间细胞质)相当于半透膜, 当外界溶液的浓度大于细胞液浓度时,细胞将失水,原生质层和细胞壁都会收缩,但原生质层伸缩性比细胞壁大,所以原生质层就会与细胞壁分开,发生“质壁分离”。 反之,当外界溶液的浓度小于细胞液浓度时,细胞将吸水,原生质层会慢慢恢复原来状态,使细胞发生“质壁分离复原”。 材料用具:紫色洋葱表皮,0.3g/ml蔗糖溶液,清水,载玻片,镊子,滴管,显微镜等 方法步骤: (1)制作洋葱表皮临时装片。 (2)低倍镜下观察原生质层位置。 (3)在盖玻片一侧滴一滴蔗糖溶液,另一侧用吸水纸吸,重复几次,让洋葱表皮浸润在蔗糖溶液中。 (4)低倍镜下观察原生质层位置、细胞大小变化(变小),观察细胞是否发生质壁分离。 (5)在盖玻片一侧滴一滴清水,另一侧用吸水纸吸,重复几次,让洋葱表皮浸润在清水中。 (6)低倍镜下观察原生质层位置、细胞大小变化(变大),观察是否质壁分离复原。 实验结果: 细胞液浓度外界溶液浓度 细胞吸水(质壁分离复原) 第四章 光合作用和细胞呼吸 第一节 ATP和酶 一、ATP 1、功能:ATP是生命活动的直接能源物质 注:生命活动的主要的能源物质是糖类(葡萄糖); 生命活动的储备能源物质是脂肪。 生命活动的根本能量来源是太阳能。 2、结构: 中文名:腺嘌呤核苷三磷酸(三磷酸腺苷) 构成:腺嘌呤—核糖—磷酸基团~磷酸基团~磷酸基团 简式: A-P~P~P (A :腺嘌呤核苷; T :3; P:磷酸基团; ~ : 高能磷酸键,第二个高能磷酸键相当脆弱,水解时容易断裂) 3、ATP与ADP的相互转化: 酶 ATP ADP+Pi+能量 注: (1)向右:表示ATP水解,所释放的能量用于各种需要能量的生命活动。 向左:表示ATP合成,所需的能量来源于生物化学反应释放的能量。 (在人和动物体内,来自细胞呼吸;绿色植物体内则来自细胞呼吸和光合作用) (2)ATP能作为直接能源物质的原因是细胞中ATP与ADP循环转变,且十分迅速。 二、酶 1、概念:酶通常是指由活细胞产生的、具有催化活性的一类特殊的蛋白质,又称为生物催化剂。(少数核酸也具有生物催化作用,它们被称为“核酶”)。 2、特性: 催化性、高效性、特异性 3、影响酶促反应速率的因素 (1)PH: 在最适pH下,酶的活性最高,pH值偏高或偏低酶的活性都会明显降低。(PH过高或过低,酶活性丧失) (2)温度: 在最适温度下酶的活性最高,温度偏高或偏低酶的活性都会明显降低。(温度过低,酶活性降低;温度过高,酶活性丧失) 另外:还受酶的浓度、底物浓度、产物浓度的影响。 第二节光合作用 一、光合作用的发现 1648 比利时,范海尔蒙特:植物生长所需要的养料主要来自于水,而不是土壤。 1771 英国,普利斯特莱:植物可以更新空气。 1779 荷兰,扬英根豪斯:植物只有绿叶才能更新空气;并且需要阳光才能更新空气。 1880美国,恩吉(格)尔曼:光合作用的场所在叶绿体。 1864 德国,萨克斯:叶片在光下能产生淀粉 1940美国,鲁宾和卡门(用放射性同位素标记法):光合作用释放的氧全部来自参加反应的水。(糖类中的氢也来自水)。 1948 美国,梅尔文卡尔文:用标14C标记的CO2追踪了光合作用过程中碳元素的行踪,进一步了解到光合作用中复杂的化学反应。 二、实验:提取和分离叶绿体中的色素 1、原理: 叶绿体中的色素能溶解于有机溶剂(如丙酮、酒精等)。 叶绿体中的色素在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快;反之则慢。 2、过程:(见书P61) 3、结果:色素在滤纸条上的分布自上而下: 胡萝卜素(橙黄色) 最快(溶解度最大) 叶黄素 (黄 色) 叶绿素a (蓝绿色) 最宽(最多) 叶绿素b (黄绿色) 最慢(溶解度最小) 4、注意: 丙酮的用途是提取(溶解)叶绿体中的色素, 层析液的的用途是分离叶绿体中的色素; 石英砂的作用是为了研磨充分, 碳酸钙的作用是防止研磨时叶绿体中的色素受到破坏; 分离色素时,层析液不能没及滤液细线的原因是滤液细线上的色素会溶解到层析液中; 5、色素的位置和功能 叶绿体中的色素存在于叶绿体类囊体薄膜上。 叶绿素a和叶绿素b主要吸收红光和蓝紫光; 胡萝卜素和叶黄素主要吸收蓝紫光及保护叶绿素免受强光伤害的作用。 Mg是构成叶绿素分子必需的元素。 三、光合作用 1、概念: 指绿色植物通过叶绿体,利用光能,把二氧化碳和水转变成储存能量的有机物,并且释放出氧气的过程。 2、过程: (1)光反应 条件:有光 场所:叶绿体类囊体薄膜 过程:① 水的光解: ② ATP的合成: (光能→ATP中活跃的化学能) (2)暗反应 条件:有光和无光 场所:叶绿体基质 过程:①CO2的固定: ② C3的`还原: (ATP中活跃的化学能→有机物中稳定的化学能) 3、总反应式: 光能 CO2 + H2O (CH2O)+ O2 叶绿体 4、实质:把无机物转变成有机物,把光能转变成有机物中的化学能 四、影响光合作用的环境因素:光照强度、CO2浓度、温度等 (1)光照强度:在一定的光照强度范围内,光合作用的速率随着光照强度的增加而加快。 (2)CO2浓度:在一定浓度范围内,光合作用速率随着CO2浓度的增加而加快。 (3)温度:光合作用只能在一定的温度范围内进行,在最适温度时,光合作用速率最快,高于或低于最适温度,光合作用速率下降。 五、农业生产中提高光能利用率采取的方法: 延长光照时间 如:补充人工光照、多季种植 增加光照面积 如:合理密植、套种 光照强弱的控制:阳生植物(强光),阴生植物(弱光) 增强光合作用效率 适当提高CO2浓度:施农家肥 适当提高白天温度(降低夜间温度) 必需矿质元素的供应 第三节 细胞呼吸 一、有氧呼吸 1、概念: 有氧呼吸是指活细胞在有氧气的参与下,通过酶的催化作用,把某些有机物彻底氧化分解,产生出二氧化碳和水,同时释放大量能量的过程。 2、过程:三个阶段 ① C6H12O6 酶 2丙酮酸 + [H](少)+ 能量(少) 细胞质基质 ② 丙酮酸 + H2O 酶 CO2 + [H] + 能量(少) 线粒体 ③ [H] + O2 酶 H2O + 能量(大量) 线粒体 (注:3个阶段的各个化学反应是由不同的酶来催化的) 3、总反应式: C6H12O6 + 6H2O + 6O2 酶 6CO2 + 12H2O + 能量 4、意义:是大多数生物特别是人和高等动植物获得能量的主要途径 二、无氧呼吸 1、概念: 无氧呼吸是指细胞在无氧条件下,通过酶的催化作用,把葡萄糖等有机物分解成乙醇和二氧化碳或乳酸, 同时释放少量能量的过程。 2、过程:二个阶段 ①:与有氧呼吸第一阶段完全相同 细胞质基质 ② 丙酮酸 酶 C2H5OH(酒精)+CO2 细胞质基质 (高等植物、酵母菌等) 或 丙酮酸 酶 C3H6O3(乳酸) (动物和人) 3、总反应式: C6H12O6 酶 2C2H5OH(酒精)+2CO2+能量 C6H12O6 酶 2C3H6O3(乳酸)+能量 4、意义: 高等植物在水淹的情况下,可以进行短暂的无氧呼吸,将葡萄糖分解为酒精和二氧化碳,释放出能量以适应缺氧环境条件。(酒精会毒害根细胞,产生烂根现象) 人在剧烈运动时,需要在相对较短的时间内消耗大量的能量,肌肉细胞则以无氧呼吸的方式将葡萄糖分解为乳酸,释放出一定能量,满足人体的需要。 三、细胞呼吸的意义 为生物体的生命活动提供能量,其中间产物还是各种有机物之间转化的枢纽。 四、应用: 1、水稻生产中适时的露田和晒田可以改善土壤通气条件,增强水稻根系的细胞呼吸作用。 2、储存粮食时,要注意降低温度和保持干燥,抑制细胞呼吸。 3、果蔬保鲜时,采用降低氧浓度、充氮气或降低温度等方法,抑制细胞呼吸,注意要保持一定的湿度。 五、实验:探究酵母菌的呼吸方式 1、过程(见书p69) 2、结论:酵母能进行有氧呼吸,也能进行无氧呼吸。 第五章 细胞的增殖、分化、衰老和凋亡 第一节 细胞增殖 一、细胞增殖的意义:是生物体生长、发育、生殖和遗传的基础 二、细胞分裂方式: 有丝分裂 (真核生物体细胞进行细胞分裂的主要方式 ) 无丝分裂 减数分裂 三、有丝分裂: 1、细胞周期: 从一次细胞分裂结束开始,直到下一次细胞分裂结束为止,称为一个细胞周期 注:①连续分裂的细胞才具有细胞周期; ②间期在前,分裂期在后; ③间期长,分裂期短; ④不同生物或同一生物不同种类的细胞,细胞周期长短不一。 2、有丝分裂的过程: 动物细胞的有丝分裂 (1)分裂间期:主要完成DNA分子的复制和有关蛋白质的合成 结果:DNA分子加倍;染色体数不变(一条染色体含有2条染色单体) (2)分裂期 前期:①出现染色体和纺锤体 ②核膜解体、核仁逐渐消失; 中期:每条染色体的着丝粒都排列在赤道板上;(观察染色体的最佳时期) 后期:着丝粒分裂,姐妹染色单体分开,成为两条子染色体,并分别向细胞两极移动。 末期:①染色体、纺锤体消失 ②核膜、核仁重现(细胞膜内陷) 植物细胞的有丝分裂 3、动、植物细胞有丝分裂的比较: 动物细胞植物细胞 不 同 点 前期: 纺锤体的形成方式不同由两组中心粒发出的星射线构成纺锤体由细胞两极发出的纺锤丝构成纺锤体 末期: 子细胞的形成方式不同由细胞膜向内凹陷把亲代细胞缢裂成两个子细胞由细胞板形成的细胞壁把亲代细胞分成两个子细胞 4、有丝分裂过程中染色体和DNA数目的变化: 5、有丝分裂的意义 在有丝分裂过程中,染色体复制一次,细胞分裂一次,分裂结果是染色体平均分配到两个子细胞中去。子细胞具有和亲代细胞相同数目、相同形态的染色体。 这保证了亲代与子代细胞间的遗传性状的稳定性。 四、无丝分裂 1、特点:在分裂过程中,没有染色体和纺锤体等结构的出现(但有DNA的复制) 2、举例:草履虫、蛙的红细胞等。 第二节 细胞分化、衰老和凋亡 一、细胞的分化 1、概念:由同一种类型的细胞经细胞分裂后,逐渐在形态结构和生理功能上形成稳定性的差异,产生不同的细胞类群的过程称为细胞分化。 2、细胞分化的原因:是基因选择性表达的结果(注:细胞分化过程中基因没有改变) 3、细胞分化和细胞分裂的区别: 细胞分裂的结果是:细胞数目的增加; 细胞分化的结果是:细胞种类的增加 二、细胞的全能性 1、植物细胞全能性的概念 指植物体中单个已经分化的细胞在适宜的条件下,仍然能够发育成完整新植株的潜能。 2、植物细胞全能性的原因:植物细胞中具有发育成完整个体的全部遗传物质。 (已分化的动物体细胞的细胞核也具有全能性) 3、细胞全能性实例: 胡萝卜根细胞离体,在适宜条件下培养后长成一棵胡萝卜。 三、细胞衰老 1、衰老细胞的特征: ①细胞核膨大,核膜皱折,染色质固缩(染色加深); ②线粒体变大且数目减少(呼吸速率减慢); ③细胞内酶的活性降低,代谢速度减慢,增殖能力减退; ④细胞膜通透性改变,物质运输功能降低; ⑤细胞内水分减少,细胞萎缩,体积变小; ⑥细胞内色素沉积,妨碍细胞内物质的交流和传递。 2、决定细胞衰老的主要原因 细胞的增殖能力是有限的,体细胞的衰老是由细胞自身的因素决定的 四、细胞凋亡 1、细胞凋亡的概念:细胞凋亡是细胞的一种重要的生命活动,是一个主动的由基因决定的细胞程序化自行结束生命的过程。也称为细胞程序性死亡。 2、细胞凋亡的意义:对生物的个体发育、机体稳定状态的维持等都具有重要作用。 第三节 关注癌症 一、细胞癌变原因: 内因:原癌基因和抑癌基因的变异 物理致癌因子 外因:致癌因子 化学致癌因子 病毒致癌因子 二、癌细胞的特征: (1)无限增殖 (2)没有接触抑制。癌细胞并不因为相互接触而停止分裂 (3)具有浸润性和扩散性。细胞膜上糖蛋白等物质的减少 (4)能够逃避免疫监视 三、我国的肿瘤防治 1、肿瘤的“三级预防”策略 一级预防:防止和消除环境污染 二级预防:防止致癌物影响 三级预防:高危人群早期检出 2、肿瘤的主要治疗方法: 放射治疗(简称放疗) 化学治疗(简称化疗) 手术切除 高一生物知识点总结 篇14本节主要讲述与生命活动有关的化学物质,主要包含:油脂的组成和结构、油脂的性质、油脂的主要用途、工业上生产肥皂的过程、酯和油脂的比较、糖类的相关知识、葡萄糖和果糖的性质、葡萄糖的化学性质、葡萄糖的制法和用途、果糖的还原性、蔗糖和麦芽糖、淀粉和纤维素、糖类水解产物的检验、淀粉水解程度的判断、氨基酸的分子结构和重要的α-氨基酸、氨基酸的化学性质、蛋白质的组成和用途、蛋白质的性质、酶的定义、酶的催化作用的特点、核酸的化学组成、RNA、DNA等知识。 这些知识主要都是些识记性的知识,重点掌握:油脂的性质、酯和油脂的比较、葡萄糖的化学性质、糖类水解产物的检验、淀粉水解程度的判断、氨基酸的化学性质、蛋白质的性质。 1、油脂的化学性质: 由于油脂是酯类,具有酯的性质,可以发生水解。若油脂中含有不饱和烃基,则还兼有烯烃的一些性质。 (1)油脂的氢化(还原反应) (2)油脂的水解:跟酯类的水解反应相同,在适当的条件下,(如有酸或碱或高温水蒸气存在),油脂跟水能够发生水解反应,生成甘油和相应的高级脂肪酸。 酸性条件下的水解——制高级脂肪酸和甘油 碱性条件下的水解(皂化反应)——制肥皂和甘油 2、酯与脂的区别: ①酯和油脂在概念上不尽相同:酯是由酸(有机羧酸或无机含氧酸)与醇相互作用失去水分子而生成的一类化合物的总称;如甲酸乙酯、硬脂酸甘油酯、硝酸纤维等均属于酯类。从结构上看,酯是含有酯基的一类化合物。而油脂指动物体内和植物体内的油脂;动物体内的油脂是固态或半固态,一般称为脂肪,植物油脂呈液态,一般称为油;油和脂肪统称为油脂,它们属于酯类。从化学意义上说油脂仅指高级脂肪酸与甘油所生成的酯。因而它是酯类中特殊的一类。 ②油脂和其他酯在结构上不尽相同,使之在性质及用途上也有区别。 3、油和脂肪的比较: 4、葡萄糖:(最重要的、最简单的单糖) ①葡萄糖的结构:分子式C6H12O6;实验式CH2O;结构式:结构简式CH2OH(CHOH)4CHO。特点:葡萄糖结构中含有-OH和-CHO,应该具有-OH和-CHO的性质,葡萄糖是多羟基醛。 ②物理性质:无色晶体,有甜味,但甜度不如蔗糖,易溶于水,稍溶于酒精,不溶于乙醚,存在于甜味水果、蜂蜜、人体血液中。 ③化学性质:葡萄糖分子中含醛基,能被弱氧化剂(银氨溶液、新制的氢氧化铜悬浊液等)氧化生成葡萄糖酸;能加氢还原为己六醇。葡萄糖分子中有五个醇羟基,能与羧酸发生酯化反应,还具有醇的`其它性质,如与活泼金属反应、消去反应。葡萄糖在人体组织中发生氧化反应,放出热量。葡萄糖在酶的作用下,发酵生成乙醇。 a、还原性:能发生银镜反应和与Cu(OH)2反应; b、加成反应:与H2加成生成己六醇; c、酯化反应:与酸发生酯化反应,例如与乙酸反应生成五乙酸葡萄糖酯; d、发酵反应(制酒精):C6H12O62CH3CH2OH+2CO2↑ e、生理氧化:糖是生命活动中的重要能源,机体所需能量的70%是食物中的糖所提供的。人体每日所摄入的淀粉类食物(占食物的大部分),最终分解为葡萄糖,然后被吸收进入血液循环。 5、氨基酸都是白色晶体,熔点高,易溶于水,难溶于有机溶剂。氨基酸的化学性质:(氨基酸结构中含有官能团-COOH和-NH2,既有酸性又有碱性)。 ①氨基酸的两性:既与酸反应,又与碱反应; ②成肽反应。 6、蛋白质的性质: ①蛋白质的胶体性质: ②两性:因为有-NH2和-COOH ③水解:在酸、碱或酶作用下天然蛋白质水解产物为多种α-氨基酸。 ④盐析:少量的某些盐能促进蛋白质溶解,大量的浓盐溶液使蛋白质的溶解度降低在溶液中使之凝聚而从溶液中析出,这种作用叫盐析。 ⑤变性:在加热、紫外线、X射线、强酸、强碱、重金属盐以及一些有机物如甲醛、酒精、苯甲酸等作用下,均能使蛋白质变性。变性属化学过程,不可逆。蛋白质变性后不仅丧失了原有的可溶性,同时也失去了生理活性。利用变性可进行消毒,但也能引起中毒。 ⑥颜色反应:具有苯环的蛋白质遇浓HNO3变性,产生黄色不溶物。蛋白质的颜色反应是检验蛋白质的方法之一,反应的实质就是硝酸作用于含有苯环的蛋白质使它变成黄色的硝基化合物。 ⑦灼烧气味:产生烧焦羽毛气味,常用此性质鉴别丝、毛织物等。 高一生物知识点总结 篇151、生物体具有共同的物质基础和结构基础。 2、细胞是生物体的结构和功能的基本单位;细胞是一切动植物结构的基本单位。病毒没有细胞结构。 3、新陈代谢是生物体进行一切生命活动的基础。 4、生物体具应激性,因而能适应周围环境。 5、生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。 6、生物体都能适应一定的环境,也能影响环境。 7、组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。 8、生物界与非生物界还具有差异性。 9、糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。 10、一切生命活动都离不开蛋白质。 高一生物知识点总结 篇16无机物 存在方式生理作用 水 结合水4。5% 自由水95%部分水和细胞中 其他物质结合。细胞结构的组成成分。 绝大部分的水以 游离形式存在,可以自由流动。 1、细胞内的良好溶剂; 2、参与细胞内许多生物化学反应; 3、水是细胞生活的液态环境; 4、水的流动,把营养物质运送到细胞,并把废物运送到排泄器官或直接排出; 无机盐多数以离子状态存,如K+、 Ca2+、Mg2+、Cl——、PO2+等 1、细胞内某些复杂化合物的重要组成部分,如Fe2+是血红蛋白的主要成分; 2、持生物体的生命活动,细胞的形态和功能; 3、维持细胞的渗透压和酸碱平衡; 小结 化合有机组合分化 化学元素化合物原生质细胞 ○原生质 1、泛指细胞内的全部生命物质,但并不包括细胞内的所有物质,如细胞壁; 2、包括细胞膜、细胞质和细胞核三部分;其主要成分为核酸、蛋白质(和脂类); 3、动物细胞可以看作一团原生质。 ○细胞质:指细胞中细胞膜以内、细胞核以外的全部原生质。 ○原生质层:成熟的植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质,为一层半透膜。 (三)细胞的基本结构 细胞壁(植物特有):纤维素+果胶,支持和保护作用 成分:脂质(主磷脂)50%、蛋白质约40%、糖类2%—10% 细胞膜 作用:隔开细胞和环境;控制物质进出;细胞间信息交流; 真核基质:有水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等 细胞细胞质是活细胞进行新陈代谢的主要场所。 分工:线、内、高、核、溶、中、叶、液、 细胞器 协调配合:分泌蛋白的合成与分泌;生物膜系统 核膜:双层膜,分开核内物质和细胞质 核孔:实现核质之间频繁的物质交流和信息交流 细胞核核仁:与某种RNA的合成以及核糖体的形成有关 染色质:由DNA和蛋白质组成,DNA是遗传信息的载体 一、细胞器差速离心:美国克劳德 线粒体叶绿体高尔基体内质网液泡核糖体中心体 分布动植物植物动植物动植物植物和某 些原生动物动植物动物 低等植物 形态椭球形、棒形扁平的球形或椭球形大小囊泡、扁平囊网状椭球形粒状小体 结构双层膜,有少量DNA单层膜,形成囊泡状和管状,内有腔没有膜结构 嵴(TP酶复合体)、基粒、基质基粒(类体)、基质(片层结构)、酶外连细胞膜,内连核膜液泡膜、细胞液蛋白质、RNA、和酶两个互相垂直的中心粒 功能有氧呼吸的主场所进行光合作用的场所细胞分泌, 成细胞壁提供合成、运输条件贮存物质,调节内环境蛋白质合成的场所与有丝有关 备注在核仁 形成 △细胞器是指在细胞质中具有一定形态结构和执行一定生理功能的结构单位, 二、协调配合分泌蛋白放射性同位素示踪法:罗马尼亚帕拉德 有机物、O2 叶绿体线粒体 能量、CO2 基因调控初步合成加工修饰 细胞核核糖体内质网高尔基体细胞膜胞外 氨基酸肽链一定空间结构 ○生物膜系统:细胞器膜+细胞膜+核膜等形成的结构体系 三、细胞核=核膜(双层)+核仁+染色质+核液 美西螈实验、蝾螈横缢实验、变形虫实验、伞藻嫁接与移植实验 细胞核是遗传信息储存和复制的场所,是代谢活动和遗传特性的控制中心。 ○染色质和染色体是同一物质在细胞周期不同阶段相互转变的形态结构。 DNA螺旋 ○+=核小体(串珠结构)染色质30nm纤维 组蛋白非组蛋白 螺旋化 0。4um超螺旋管(圆筒形)2—10um染色单体(圆柱状、杆状) 四、树立观点(基本思想) 1、有一定的结构就必然有与之相对应功能的存在; ○结构和功能相统一 2、任何功能都需要一定的结构来完成 3、各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存; ○分工合作 1、细胞的生物膜系统体现细胞各结构之间的协调配合。 ○生物的整体性:整体大于各部分之和;只有在各部分组成一个整体的时才能体现出生命现象。 1、结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。 2、功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。 3、调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。 4、与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。 五、总结 细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。 (四)细胞物质的运输 ○科学家研究细胞膜结构的历程是从物质跨膜运输的现象开始的,分析成分是了解结构的基础,现象和功能又提供了探究结构的线索。人们在实验观察的基础上提出假说,又通过进一步的实验来修正假说,其中方法与技术的进步起到关键的作用 成分:磷脂和蛋白质和糖类 结构:单位膜(三明治)→流动镶嵌模型 细胞膜特性结构特点:具有相对的流动性 生理特性:选择透过性(对离子和小分子物质具选择性) 保护作用 功能控制细胞内外物质交换 细胞识别、分泌、排泄、免疫等 高一生物知识点总结 篇171、生命系统的结构层次:细胞组织器官系统(植物没有系统)个体种群群落生态系统生物圈 细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统 2、光学显微镜的操作步骤:对光低倍物镜观察移动视野中央(偏哪移哪) 高倍物镜观察:只能调节细准焦螺旋;调节大光圈、凹面镜 3、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞 注、原核细胞和真核细胞的比较: 原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA不与蛋白质结合,;细胞器只有核糖体;有细胞壁(主要成分是肽聚糖),成分与真核细胞不同。 真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。 原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。 真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。 高一生物知识点总结 篇181、体液调节中,激素调节起主要作用。 2、人体主要激素及其作用 3、激素间的相互关系: 协同作用:如甲状腺激素与生长激素 拮抗作用:如胰岛素与胰高血糖素 4、激素调节的实例:实例一、血糖平衡的调节,(甲状腺激素分泌的分级调节:课本P28) 1)、血糖的含义:血浆中的葡萄糖(正常人空腹时浓度:3.9-6.1mmol/L) 2)、血糖的来源和去路: 3)、调节血糖的激素: (1)胰岛素:(降血糖)分泌部位:胰岛B细胞 作用机理: ①促进血糖进入组织细胞,并在组织细胞内氧化分解、合成糖元、转变成脂肪酸等非糖物质。 ②抑制肝糖元分解和非糖物质转化为葡萄糖(抑制2个来源,促进3个去路) (2)胰高血糖素:(升血糖)分泌部位:胰岛A细胞 作用机理:促进肝糖元分解和非糖物质转化为葡萄糖(促进2个来源) 4)、血糖平衡的调节:(负反馈) 血糖升高→胰岛B细胞分泌胰岛素→血糖降低 血糖降低→胰岛A细胞分泌胰高血糖素→血糖升高 5)血糖不平衡:过低—低血糖病;过高—糖尿病 高一生物知识点总结 篇19细胞内的能源物质种类及其分解放能情况 1.主要能源物质:糖类。 2.主要储能物质:脂肪。除此之外,动物细胞中的糖原和植物细胞中的淀粉也是重要的储能物质。 3.直接能源物质:ATP。糖类、脂肪、蛋白质中的能量只有转移到ATP中,才能被生命活动利用。 4.细胞中的能源物质为糖类、脂肪、蛋白质,三者供能顺序是:糖类→脂肪→蛋白质。糖类是主要的能源物质;当外界摄入能量不足时(如饥饿),由脂肪分解供能; 蛋白质作为生物体重要的结构物质,一般不提供能量,但在营养不良、疾病、衰老等状态下也可分解提供能量。 对糖类、脂肪功能的理解分析 (1)糖类功能的全面理解 ①糖类是生物体的主要能源物质 a.糖类是生物体进行生命活动的主要能源物质(70%); b.淀粉和糖原分别是植物、动物细胞内的储能物质,而纤维素为结构物质,非储能物质。 ②糖类是细胞和生物体的重要结构成分 a.五碳糖是构成核酸的主要成分; b.纤维素和果胶是植物细胞壁的主要成分; c.细菌的细胞壁主要由肽聚糖组成。 (2)脂肪是细胞内良好的储能物质的原因?相对于糖类、蛋白质,脂肪中C、H的比例高,而O比例低,故在氧化分解时,单位质量的脂肪较糖类、蛋白质消耗的氧气多,产生的水多,产生的能量也多。 高一生物知识点总结 篇20一、有关水的知识要点 存在形式含量功能联系 水自由水约95% 1、良好溶剂 2、参与多种化学反应 3、运送养料和代谢废物它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。 结合水约4.5%细胞结构的重要组成成分 (1)做溶剂。水分子的极性强,能是溶解于其中的许多物质解离成离子,利于化学反应进行。 (2)运输营养物质和代谢废物。水溶液的流动性大,水在生物体内还起到运输物质的作用,将吸收来的营养物质运输到各组织中区,并将组织中的废物运输到排泄器官。 (3)调节温度。水分子之间借助氢键连接,氢键的破坏吸收能量,反之释放能量。人蒸发少量的汗就能散发大量的热。再加上水的流动性大,能随血液循环迅速分布全身,因此对于维持生物体的温度起很大作用。 (4)调控代谢活动。生物体内含水量多少以及水的存在状态改变,都影响新陈代谢的进行。一般生物体内含水70%以上时,细胞代谢活跃;含水量降低,则代谢不活跃或进入休眠状态。 二、无机盐(绝大多数以离子形式存在)功能: ①、构成某些重要的化合物,如:叶绿素、血红蛋白等 ②、维持生物体的生命活动(如动物缺钙会抽搐) ③、维持酸碱平衡,调节渗透压。 (1)有些无机盐是细胞内某些复杂的化合物的重要组成部分,如Mg2+是叶绿素分子必需的成分;Fe2+是血红蛋白的主要成分;碳酸钙是动物和人体的骨、牙齿中的重要成分;P043-是生物膜的主要成分磷脂的组成成分; (2)无机盐参与维持正常的生命活动,哺乳动物血液中必须含有一定量的Ca2+,如果某个动物血液中钙盐的含量过低就会出现抽搐。 (3)维持生物体内的平衡: ①渗透压的平衡Na+,Cl一对细胞外液渗透压起重要作用,K+则对细胞内液渗透压起决定作用。 ②酸碱平衡(即pH平衡),pH调节着细胞的一切生命活动,它的改变影响着原生质体组成物质的所有特性以及在细胞内发生的一切反应:如人血浆中H2CO3/HCO3-,HPO42-/H2P04-等。 ③离子平衡:动物细胞内外Na+/K+/Ca2+的比例是相对稳定的。细胞膜外Na+高、K+低,细胞膜内K+高、Na+低。K+、Na+这两种离子在细胞膜内外分布的浓度差,是使细胞可以保持反应性能的重要条件。 高一生物知识点总结 篇21一、人和动物体内三大营养物质代谢关系 在生物体内,糖类、脂质和蛋白质这三类物质的代谢是同时进行的,它们之间既相互联系,又相互制约。形成一个协调统一的过程,下面仅就人和动物体内三大物质的代谢情况进行讨论。 (1)糖类、脂质和蛋白质之间是可以转化。 Ⅰ:糖类和脂质之间的转化关系: ①糖类可大量转变为脂肪:糖类代谢的中间产物可以转变为甘油和脂肪酸,两者结合生成脂肪,这种转变在人和动物体内可大量进行,这就是人和动物吃糖能胖的原理。 ②脂肪只能少量转变为糖:在人和动物体内,甘油和脂肪酸都可以加入糖代谢途径,但甘油经一系列过程可以转变为糖,而脂肪酸却几乎不能转变为糖,因此,脂肪不能大量转变为糖。这就是肥胖后很难减肥的原因之一。 Ⅱ:糖类和蛋白质之间的转化关系。 ①糖类代谢的中间产物可以转变为非必需氨基酸:糖类在分解过程中产生的一些中间产物(如丙酮酸)可通过转氨基作用产生与之相对的非必需氨基酸,但由于糖类分解时不能产生与必需氨基酸相对应的中间产物,因此糖类不能转化为必需氨基酸,这也是人体每天必需摄取一定量蛋白质的原因之一。 ②蛋白质可以转化为糖类。蛋白质水解作用氨基酸脱氨基作用不含N糖类 Ⅲ:蛋白质和脂质之间的转化关系: ①氨基酸可以转变为脂肪:氨基酸分解代谢过程中的中间产物既可转变为脂肪,又可转变为脂肪酸,因此在人和动物体内蛋白质可大量合成脂肪。 此外,有些氨基酸也可转变为磷脂等。 ②脂肪几乎不能转变为氨基酸:在人和动物体内,甘油可以先转变为丙酮酸,然后再经转氨基作用生成某些非必需氨基酸,脂肪酸因几乎不能转变为糖类,因而脂肪酸在人和动物体内不能转变为氨基酸。总之,人和动物几乎不能利用脂质来合成蛋白质。 (2)糖类、脂质和蛋白质之间转化的局限性 ①糖类、脂质和蛋白质之间的转化是有条件的。例如,只有在糖类供应充足的情况下, 糖类才有可能大量转化成脂质。 ②各种代谢物之间的转化程度也是有明显差异的。例如,糖类可以大量转化成脂肪,而脂肪却不能大量转化成糖类。 在正常情况下。人和动物体所需要的能量主要是由糖类氧化分解供给的,只有当糖类代谢发生障碍引起供能不足时,才由脂肪和蛋白质氧化分解供给能量,保证机体的能量需要。当糖类和脂肪的摄入量都不足时,体内蛋白质的分解就会增加。而当大量摄入糖类和脂肪时,体内蛋白质的分解就会减少。 (3)三大营养物质代谢的区别和联系: 来源相同:动物体内的三大营养物质均可来自食物,都必须经过消化与吸收相代谢途径相同:三大营养物质在体内均可合成、分解、转变。都必需在酶的催化下点才能完成都能作为能源物质:氧化分解,释放能量。 最终产物均有CO2和H2O贮存方式不同:糖类和脂肪可以在体内贮存,蛋白质不能在体内贮存。不同代谢最终产物不同:糖类、脂肪的代谢终产物只有CO2和H2O,而蛋白质的代谢终点产物除CO2和H2O外,还有尿素等含氮废物糖类是主要能源物质,脂肪是体内的储备能源物质。蛋白质只是一种能源物质(只在糖、脂肪严重供能不足时,方由蛋白质供能) 高一生物知识点总结 篇22一、细胞核的结构 1、染色质:指细胞核内易被碱性染料染成深色的物质,故叫染色质。主要由DNA和蛋白质组成,在细胞有丝分裂间期:染色质呈细长丝状且交织成网状,在细胞有丝分裂的分裂期,染色质细丝高度螺旋、缩短变粗成圆柱状或杆状的染色体。染色质和染色体是同种物质在细胞不同分裂时期的两种不同的形态。 2、核膜:双层膜,把核内物质与细胞质分开。 3、核仁:与某种RNA的合成以及核糖体的形成有关。在细胞有丝分裂过程中核仁呈现周期性的消失和重建。 4、核孔:实现细胞核与细胞质之间的物质交换和信息交流。如mRNA通过核孔进入细胞质。 二、细胞核的功能 1、是遗传信息库(遗传物质DNA的储存和复制的主要场所), 2、是细胞代谢活动和细胞遗传特性的控制中心; 三、有机的统一整体 细胞是一个有机的统一整体,细胞只有保持完整性,才能正常地完成各种生命活动: 1、结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。细胞核不属于细胞器。 2、功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。 3、调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。 4、与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。 [细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。] 高一生物知识点总结 篇23X染色体隐性遗传 1、人类红绿色盲 ①、致病基因Xa正常基因:XA ②、患者:男性XaY女性XaXa正常:男性XAY女性XAXAXAXa(携带者) 2、伴X隐性遗传的遗传特点: ①、人群中发病人数男性患者多于女性患者。 ②、往往有隔代遗传现象 ③、具交叉遗传现象:男性→女性→男性(母病子必病) X染色体显性遗传 1、抗维生素D佝偻病 ①、致病基因XA正常基因:Xa ②、患者:男性XAY女性XAXAXAXa正常:男性XaY女性XaXa 2、伴X显性遗传的遗传特点: ①、人群中发病人数女性患者多于男性患者。 ②、具有连续遗传现象 ③、具交叉遗传现象:男性→女性→男性(父病女必病) Y染色体遗传 1、人类毛耳现象 2、Y染色体遗传的遗传特点:基因位于Y染色体上,仅在男性个体中遗传 遗传病类型的鉴别 1、先判断基因的显、隐性: ①、父母无病,子女有病——隐性遗传(无中生有) ②、父母有病,子女无病——显性遗传(有中生无) 2、再判断致病基因的位置: ①、已知隐性遗传 父正女病——常、隐性遗传母病儿正——常、隐性遗传 ②、已知显性遗传 父病女正——常、显性遗传母正儿病——常、显性遗传 3、不能确定的判断: ①、代代之间具有连续性——可能为显性遗传 ②、患者无性别差异,男女各占1/2——可能为常染色体遗传 ③、患者有明显性别差异 i、男性明显多于女性——可能为伴X隐性遗传 ii、女性明显多于男性——可能为伴X显性遗传 iii、男性全患病,女性全不患病——可能为伴Y遗传 高一生物知识点总结 篇24人和动物体内三大营养物质代谢关系 在生物体内,糖类、脂质和蛋白质这三类物质的代谢是同时进行的,它们之间既相互联系,又相互制约。形成一个协调统一的过程,下面仅就人和动物体内三大物质的代谢情况进行讨论。 (1)糖类、脂质和蛋白质之间是可以转化。 Ⅰ:糖类和脂质之间的转化关系: ①糖类可大量转变为脂肪:糖类代谢的中间产物可以转变为甘油和脂肪酸,两者结合生成脂肪,这种转变在人和动物体内可大量进行,这就是人和动物吃糖能胖的原理。 ②脂肪只能少量转变为糖:在人和动物体内,甘油和脂肪酸都可以加入糖代谢途径,但甘油经一系列过程可以转变为糖,而脂肪酸却几乎不能转变为糖,因此,脂肪不能大量转变为糖。这就是肥胖后很难减肥的原因之一。 Ⅱ:糖类和蛋白质之间的'转化关系。 ①糖类代谢的中间产物可以转变为非必需氨基酸:糖类在分解过程中产生的一些中间产物(如丙酮酸)可通过转氨基作用产生与之相对的非必需氨基酸,但由于糖类分解时不能产生与必需氨基酸相对应的中间产物,因此糖类不能转化为必需氨基酸,这也是人体每天必需摄取一定量蛋白质的原因之一。 ②蛋白质可以转化为糖类。蛋白质水解作用氨基酸脱氨基作用不含N糖类 Ⅲ:蛋白质和脂质之间的转化关系: ①氨基酸可以转变为脂肪:氨基酸分解代谢过程中的中间产物既可转变为脂肪,又可转变为脂肪酸,因此在人和动物体内蛋白质可大量合成脂肪。 此外,有些氨基酸也可转变为磷脂等。 ②脂肪几乎不能转变为氨基酸:在人和动物体内,甘油可以先转变为丙酮酸,然后再经转氨基作用生成某些非必需氨基酸,脂肪酸因几乎不能转变为糖类,因而脂肪酸在人和动物体内不能转变为氨基酸。总之,人和动物几乎不能利用脂质来合成蛋白质。 (2)糖类、脂质和蛋白质之间转化的局限性 ①糖类、脂质和蛋白质之间的转化是有条件的。例如,只有在糖类供应充足的情况下, 糖类才有可能大量转化成脂质。 ②各种代谢物之间的转化程度也是有明显差异的。例如,糖类可以大量转化成脂肪,而脂肪却不能大量转化成糖类。 在正常情况下。人和动物体所需要的能量主要是由糖类氧化分解供给的,只有当糖类代谢发生障碍引起供能不足时,才由脂肪和蛋白质氧化分解供给能量,保证机体的能量需要。当糖类和脂肪的摄入量都不足时,体内蛋白质的分解就会增加。而当大量摄入糖类和脂肪时,体内蛋白质的分解就会减少。 (3)三大营养物质代谢的区别和联系: 来源相同:动物体内的三大营养物质均可来自食物,都必须经过消化与吸收相代谢途径相同:三大营养物质在体内均可合成、分解、转变。都必需在酶的催化下点才能完成都能作为能源物质:氧化分解,释放能量。 最终产物均有CO2和H2O贮存方式不同:糖类和脂肪可以在体内贮存,蛋白质不能在体内贮存。不同代谢最终产物不同:糖类、脂肪的代谢终产物只有CO2和H2O,而蛋白质的代谢终点产物除CO2和H2O外,还有尿素等含氮废物糖类是主要能源物质,脂肪是体内的储备能源物质。蛋白质只是一种能源物质(只在糖、脂肪严重供能不足时,方由蛋白质供能) 高一生物知识点总结 篇25从生物圈到细胞 一、相关概念 细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统 生命系统的结构层次:细胞→组织→器官→系统(植物没有系统)→个体→种群 →群落→生态系统→生物圈 二、病毒的相关知识: 1、病毒(Virus)是一类没有细胞结构的生物体。主要特征: ①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见; ②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒; ③、专营细胞内寄生生活; ④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。 2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。 3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。 细胞的多样性和统一性 一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞 二、原核细胞和真核细胞的比较: 1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。 2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。 看完上面的高一生物必修一知识点总结,一定加深了同学们对于高一生物必修一知识的认知,也希望同学们以后学习保持知识点总结的良好习惯。 高一生物知识点总结 篇26细胞的癌变是指在生物体的发育中,有些细胞受到各种致癌因子的作用,不能正常的完成细胞分化,变成了不受机体控制的、能够连续不断的分裂的恶性增殖细胞。 癌细胞具有能够无限增殖、形态结构发生了变化、癌细胞表面发生了变化的特征。 能使细胞发生癌变的致癌因子有物理致癌因子、化学致癌因子、病毒致癌因子。 物理致癌因子:主要是辐射致癌;化学致癌因子:如苯、坤、煤焦油等;病毒致癌因子:能使细胞癌变的病毒叫肿瘤病毒或致癌病毒。 细胞癌变的机理是癌细胞是由于原癌基因激活,细胞发生转化引起的。 预防细胞癌变的措施:避免接触致癌因子;增强体质,保持心态健康,养成良好习惯,从多方面积极采取预防措施。 【同步练习题】 1、当今世界正严重威胁人类生存的细胞变化是 A、细胞衰老 B、细胞分裂 C、细胞分化 D、细胞癌变 答案:D 解析:当今世界严重威胁人类生存的顽疾是癌症,它是机体细胞在致癌因子的作用下癌变引起的。 2、下列关于吸烟的叙述,哪一项是不正确的 A、香烟中的煤焦油属化学致癌因子,吸烟者易患肺癌 B、少量吸烟对健康有好处 C、烟草中有毒物质主要是尼古丁 D、吸烟主要伤害肺,对大脑功能也有损害 答案:B 解析:少量吸烟对健康也有害。烟草不完全燃烧产生的烟雾中含有烟碱、焦油、尼古丁等有害物质,能危害呼吸道,甚至作为化学致癌因子诱发癌症。 3、能引起细胞发生癌变的因素有 ①X射线照射 ②煤焦油的刺激 ③温度过高 ④细胞失水 ⑤肿瘤病毒的侵染 ⑥紫外线照射 A、①②④⑤ B、①②③⑤ C、①②⑤⑥ D、②④⑥ 答案:C 解析:能引起细胞发生癌变的因素有:物理致癌因子,主要是辐射致癌,如电离辐射、X射线、紫外线;化学致癌因子,如砷、苯、煤焦油等;病毒致癌因子,已发现150多种。 4、下列选项中,哪一项不是癌细胞的特征 A、能分裂和分化 B、能无限增殖 C、形态、结构与正常细胞不同 D、细胞膜上糖蛋白减少,容易分散和转移 答案:A 解析:癌细胞的特征有:无限增殖;改变形态结构;易分散和转移;常有“多极分裂”现象;对不良的环境一般具有较强的抵抗力等。 5、下列哪一项是癌细胞形成的内因 A、物理致癌因子 B、化学致癌因子 C、肿瘤病毒 D、原癌基因和抑癌基因 答案:D 解析:物理致癌因子、化学致癌因子和肿瘤病毒是癌细胞形成的外因,原癌基因和抑癌基因是癌细胞形成的内因。 高一生物知识点总结 篇27一、细胞的分化 (1)概念:在个体发育中,相同细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。 (2)过程:受精卵、增殖为多细胞、分化为组织、器官、系统、发育为生物体 (3)特点:持久性、稳定不可逆转性、普遍性 二、细胞全能性: (1)体细胞具有全能性的原因 由于体细胞一般是通过有丝分裂增殖而来的,一般已分化的细胞都有一整套和受精卵相同的DNA分子,因此,分化的细胞具有发育成完整新个体的潜能。 (2)植物细胞全能性 高度分化的植物细胞仍然具有全能性。 例如:胡萝卜跟根组织的细胞可以发育成完整的新植株 (3)动物细胞全能性 高度特化的动物细胞,从整个细胞来说,全能性受到限制。但是,细胞核仍然保持着全能性。例如:克隆羊多莉 (4)全能性大小:受精卵>生殖细胞>体细胞 高一生物知识点总结 篇281、基因是DNA的片段,但必须具有遗传效应,有的DN_段属间隔区段,没有控制性状的作用,这样的DN_段就不是基因。每个DNA分子有很多个基因。每个基因有成百上千个脱氧核苷酸。基因不同是由于脱氧核苷酸排列顺序不同。基因控制性状就是通过控制蛋白质合成来实现的。DNA的遗传信息又是通过RNA来传递的。 2、基因控制蛋白质的合成:RNA与DNA的区别有两点: ①碱基有一个不同:RNA是尿嘧啶,DNA则为胸腺嘧啶。 ②五碳糖不同:RNA是核糖,DNA是脱氧核糖,这样一来组成RNA的基本单位就是核糖核苷酸;DNA则为脱氧核苷酸。 3、转录: (1)场所:细胞核中。 (2)信息传递方向:DNA→信使RNA。 (3)转录的过程:在细胞核中进行;以DNA特定的一条单链为模板转录;特定的配对方式: 4、翻译: (1)场所:细胞质中的核糖体,信使RNA由细胞核进入细胞质中与核糖体结合。 (2)信息传递方向:信使RNA→一定结构的蛋白质。 5、信使RNA的遗传信息即碱基排列顺序是由DNA决定的;转运RNA携带的氨基酸(如甲硫氨酸、谷氨酸)能在蛋白质的氨基酸顺序的哪一个位置上是由信使RNA决定的,归根结底是由DNA的特定片段(基因)决定的。 6、信使RNA是由DNA的一条链为模板合成的;蛋白质是由信使RNA为模板,每三个核苷酸对应一个氨基酸合成的。公式:基因(或DNA)的碱基数目:信使RNA的碱基数目:氨基酸个数=6:3:1;脱氧核苷酸的数目=的基因(或DNA)的碱基数目;肽键数=脱去水分子数=氨基酸数目—肽链数。 7、一种氨基酸可以只有一个密码子,也可以有数个密码子,一种氨基酸可以由几种不同的密码子决定。 8、基因对性状的控制: ①一些基因就是通过控制酶的合成来控制代谢过程,从而控制生物性状的。白化病是由于基因突变导致不能合成促使黑色素形成的酪氨酸酶。 ②一些基因通过控制蛋白质分子的结构来直接影响性状的。(如:镰刀型细胞贫血症)。 高一生物知识点总结 篇29第一节物质跨膜运输的实例 一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。 二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。 三、发生渗透作用的条件: 1、具有半透膜 2、膜两侧有浓度差 四、细胞的吸水和失水: 外界溶液浓度>细胞内溶液浓度→细胞失水。 外界溶液浓度<细胞内溶液浓度→细胞吸水。 第二节生物膜的流动镶嵌模型 一、细胞膜结构:磷脂蛋白质糖类 ↓↓↓ 磷脂双分子层“镶嵌蛋白”糖被(与细胞识别有关) (膜基本支架) 二、结构特点:具有一定的流动性。 细胞膜 (生物膜)功能特点:选择透过性。 第三节物质跨膜运输的方式 一、相关概念: 自由扩散:物质通过简单的扩散作用进出细胞。 协助扩散:进出细胞的物质要借助载体蛋白的扩散。 主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。 二、自由扩散、协助扩散和主动运输的比较: 比较项目运输方向是否要载体是否消耗能量代表例子。 自由扩散高浓度→低浓度不需要不消耗O2、CO2、H2O、乙醇、甘油等。 协助扩散高浓度→低浓度需要不消耗葡萄糖进入红细胞等。 主动运输低浓度→高浓度需要消耗氨基酸、各种离子等。 三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。 高一生物知识点总结 篇30一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类(约2%--10%) 二、细胞膜的功能: ①将细胞与外界环境分隔开 ②控制物质进出细胞 ③进行细胞间的'信息交流 三、植物细胞还有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。 四、细胞膜的制备 1、选材:人或动物成熟的红细胞。 原因:没有细胞器没有细胞核没有细胞壁 其他材料:蒸馏水、滴管、吸水纸、载玻片、盖玻片、显微镜 2、原理:细胞内的物质有一定浓度。把红细胞放入清水中,水会进入红细胞,导致红细胞吸水涨破,使细胞膜内的物质流出来,除去细胞内的其他物质得到细胞膜。 3、方法和步骤 ⑴将红细胞稀释液制成装片。 ⑵在高倍镜下观察,盖玻片一侧滴加蒸馏水,在另一侧用吸水纸吸引。 ⑶红细胞凹陷消失,体积增大,最后导致细胞破裂,内容物流出。 ⑷利用离心法获得纯净的细胞膜。 高一生物知识点总结 篇31一、光合作用的概念 1.概念及其反应式 光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。 总反应式:CO2+H2O───CH2O+O2 反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)“─”不能写成“=”。 对光合作用的概念与反应式应该从光合作用的场所——叶绿体、条件——光能、原料——二氧化碳和水、产物——糖类等有机物和氧气来掌握。 2.光合作用的过程 ①光反应阶段:a、水的光解:2H2O4[H]+O2(为暗反应提供氢);b、ATP的形成:ADP+Pi+光能─ATP(为暗反应提供能量) ②暗反应阶段:a、CO2的固定:CO2+C52C3b、C3化合物的还原:2C3+[H]+ATP;(CH2O)+C5 二、光合作用的意义 1.生物进化方面: 一是光合作用产生的O2为需氧型生物的出现提供了可能; 二是O2在一定条件下形成的臭氧(O3)吸收紫外线,减弱太阳辐射对生物的影响为水生生物到达陆地提供了可能; 三是光合作用产生的大量有机物为较高级异养型生物的出现提供了可能。 2.现实意义:提高光合作用效率,解决粮食短缺问题。主要应满足光合作用所需条件,内部条件——植物所需的各种矿质元素、光合作用的面积(适当密植),外部条件——充足的原料(CO2和H2O)、适宜的光照、较长的光合作用时间。 高一生物知识点总结 篇32第一节、生物与环境的相互关系 一、生态因素对环境的影响 1、生态学:研究生物与环境之间相互关系的科学,叫做~。 2、生态因素:环境中影响生物的形态、生理和分布的因素,叫做~。 3、种内关系:同种生物的不同个体或群体之间的关系。包括种内互助和种内斗争。 4、种内互助:同种生物生活在一起,通力合作,共同维护群体的生存。如:群聚的生活的某些生物,聚集成群,对捕食和御敌是有利的。 5、种内斗争:同种个体之间由于食物、栖所、寻找配偶或其它生活条件的矛盾而发生斗争的现象是存在的。(如:某些水体中,鲈鱼,无其它鱼类、食物不足时,成鱼就以本种小鱼为食。) 7、种间关系:是指不同生物之间的关系,包括共生、寄生、竞争、捕食等。 8、互利共生:两种生物共同生活在一起,相互依赖,彼此有利;如果彼此分开,则双方或者一方不能独立生存。(例如:地衣是藻类与真菌共生体,豆科植物与根瘤菌的共生。) 9、寄生:一种生物寄居在另一种生物体的体内或体表,从那里吸取营养物质来维持生活,这种现象叫做~。(例如:蛔虫、绦虫、血吸虫等寄生在其它动物的体内;虱和蚤寄生在其它动物的体表;菟丝子寄生在豆科植物上;噬菌体寄生在细菌内部。) 10、竞争:两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象,叫做~。(例如:大草履虫和小草履虫) 11、捕食:一种生物以另一种生物为食。 12、非生物因素对生物的影响: ①光:阳光对生物的生理和分布起着决定性作用。A、光的强与弱对植物:如松、杉、柳、小麦、玉米等在强光下生长好;人参、三七在弱光下生长。浅海与深海,海平面200M以下无植物生存。b、光照时间的长短:菊花秋季短日照下开花;菠菜、鸢尾在长日照下开花。c、阳光影响动物的体色:鱼的背面颜色深;腹面颜色浅;d、光照长短与动物的生殖:适当增加光照时间可使家鸡多产蛋。E、光线影响动物习性:白天活动与夜晚活动。 ②温度:a、不同地带的差异:寒冷地方针叶林较多;温暖地带地方阔叶林较多b、植物的南北栽种:苹果、梨不宜在热带栽种;柑桔不宜在北方栽种;c、对动物形成的影响:同一种类的哺乳动物生长在寒冷地带,体形大;d、对动物习性的影响:冬眠—-蛇、蛙等变温动物;夏眠—-蜗牛;洄游:迁徙;季节性换羽。 ③水分:限制陆生生物分布的重要因素;水是影响生物生存的重要生态因素;一切生物的生活都离不开水。 13、生态因素的综合作用:环境中的各种生态因素,对生物体是同时共同起作用的;但各种生态因素所起的作用并不是同等重要的,有关键因素和次要因素之分。 14、区分共生、竞争和捕食关系的图象。a、共生图象:特点是两种生物个体数量为同步变化,二者同生共死;b、捕食图象,特点是两种生物个体数量变化不同步,先增者先减少,为被捕食者,后增者后减少,为捕食者。被捕食者图象的最高点高于捕食者;c、竞争图象,特点是两种生物开始时个体数量为"同步变化,以后则你死我活。4、决定海洋不同深度植物分布的主要因素是阳光。 二、生物对环境的适应和影响(此项仅供参考,可以不掌握) 1、保护色:动物适应栖息环境而具有的与环境色彩相似的体色。 2、警戒色:某些有恶臭或毒刺的动物所具有的鲜艳色彩和斑纹。 3、拟态:某些生物在进化过程中形成的外表形状或色泽斑,与其他生物或非生物异常相似的状态。 4、适应的相对性:指生物对环境的适应只是一定程度的适应,不是绝对的。 5、生物对环境的适应,既有普遍性,又具有相对性。因为生物生存的环境不断变化,而生物的遗传具有保守性,不会因为环境变化立即改变其遗传性,因此适应的形成是长期的自然选择的结果。选择作用不会一次到位,更不会造成尽善尽美的选择结果,所以,适应具有相对性。 6、适应的普遍性:植物对环境的适应,动物对环境的适应,外形的适应性特征。 7、适应具有相对性的原因:遗传物质稳定性与环境条件变化相互作用的结果。 8、保护色:动物体色与背景色彩相似,利于取食避敌,避役(变色龙)、比目鱼、雷鸟、蝗、某些沙漠植物。 9、警戒色:动物体色与背景色彩形成对比色,具有恶臭(毒刺)或者鲜艳色彩(斑纹)的特点,充分暴露自己,警告敌人不要侵犯,以防止“两败俱伤”。警戒色是冒充的“艺术”,以鲜艳色彩向动物们发出警告。(例如:黄峰、蝮蛇体表的斑纹、瓢虫体表的斑点) 10、拟态:生物形态、色泽模拟背景生物体,(如:竹节虫、尺蠖的形状像树枝、枯叶蝶、有的螳螂成虫的翅展开时像鲜艳的花朵,若虫的足像美丽的花瓣、蜂兰。) 11、生物对环境的影响:生物对环境的适应,既有普遍性又有相对性。生物在适应环境的同时,也能够影响环境。 第二节、种群和生物群落 1、种群:在一定空间和时间内的同种生物个体的总和。(如:一个湖泊中的全部鲤鱼就是一个种群) 2、种群密度:是指单位空间内某种群的个体数量。 3、年龄组成:是指一个种群中各年龄期个体数目的比例。 4、性别比例:是指雌雄个体数目在种群中所占的比例。 5、出生率:是指种群中单位数量的个体在单位时间内新产生的个体数目。 6、死亡率:是指种群中单位数量的个体在单位时间内死亡的个体数目。 7、生物群落:生活在一定的自然区域内,相互之间具有直接或间接关系的各种生物群落的总和。 8、生物群落的结构:是指群落中各种生物在空间上的配置情况,包括垂直结构和水平结构等方面。 9、垂直结构:生物群落在垂直方向上具有明显的分层现象,这就是生物群落的垂直结构。如森林群落、湖泊群落垂直结构。 10、水平结构:在水平方向上的分区段现象,就是生物群落的水平结构。如:林地中的植物沿着水平方向分布成不同小群落的现象。 11、种群特征:种群密度、出生率和死亡率、年龄组成、性别比例等。种群数量变化是种群研究的核心问题,种群密度是种群的重要特征。出生率和死亡率,年龄组成,性别比例以及迁人和迁出等都可以影响种群的数量变化。其中出生率和死亡率,迁入和迁出是决定种群数量变化的主要因素,年龄组成是预测种群数量变化的主要依据。 12、种群密度的测定:对于动物采用标志重捕法,其公式为种群数量N=(标志个体数X重捕个体数)/重捕标志数. 13种群密度的特点:①相同的环境条件下,不同物种的种群密度不同。②不同的环境条件下,同一物种的种群密度不同。 14、出生率和死亡率:出生率和死亡率是决定种群密度和种群大小的重要因素。出生率高于死亡率,种群密度增加;出生率低于死亡率,种群密度下降。;出生率与死亡率大体相等,则种群密度不会有大的变动。 15、年龄组成的类型:(1)增长型:年轻的个体较多,年老的个体很少。这样的种群正处于发展时期,种群密度会越来越大。(2)稳定型:种群中各年龄期的个体数目比例适中,这样的种群正处于稳定时期,种群密度在一段时间内会保持稳定。(3)衰退型:种群中年轻的个体较少,而成体和年老的个体较多,这样的种群正处于衰退时期,种群密度会越来越小。 16、性别比例有三种类型:(1)雌雄相当,多见于高等动物,如黑猩猩、猩猩等。(2)雌多于雄,多见于人工控制的种群,如鸡、鸭、羊等。有些野生动物在繁殖时期也是雌多于雄,如象海豹。(3)雄多于雌,多见于营社会性生活的昆虫,如白蚁等。7、种群数量的.变化:①影响因素:a、自然因素:气候、食物、被捕食和传染病。B、人为因素:人类活动。②变化类型:增长、下降、稳定和波动。③两种增长曲线:a 、型增长特点:连续增长,增长率不变。条件:理想条件。b、“S”型增长特点:级种群密度增加→增长率下降→最大值稳定;条件:自然条件(有限条件)。 ④研究意义:防治害虫,生物资源的合理利用和保护。8、预测未来种群密度变化趋势看年龄组成。而出生率和死亡率则显示近期种群密度变化趋势。 第三节、生态系统 生态系统:就是在一定的空间和时间内,在各种生物之间以及生物与无机环境之间,通过能量流动和物质循环而相互作用的一个自然系统。 1、地球上最大的生态系统是生物圈。 2、生态系统的类型:地球上的生态系统可以分为陆地生态系统和水域生态系统两大类。在陆地生态系统中,又分为森林生态系统、草原生态系统、农田生态系统等类型。在水域生态系统中,又分为海洋生态系统和淡水生态系统。 3、森林生态系统:湿润或比较湿润的地区;物种多,植物以乔木为主,树栖攀援动物多,种群密度稳定,群落结构复杂稳定。 4、草原生态系统: 年降水量少的地区;物种少,植物以草本为主,善跑或穴居动物多,种群密度易变,群落结构一般不稳定。 5农业生态系统: 农作物种植区;作物种类少,种群密度大,群落结构单一而不大稳定,植物主要为农作物,人为作用突出。 6、海洋生态系统: 整个海洋,类型多,分布各异; 微小浮游植物为主,有大型藻类,各类动物集中于200以上水层,底栖动物适应性特殊。 7、淡水生态系统: 浅水区为水生和沼泽植物,深水区表层为浮游植物,主要有浮游动物、鱼类和底栖动物。 二、生态系统的结构 1、分解者:主要是指细菌、真菌等营腐生生活的微生物,它们能把动植物的尸体、排泄物和残落物等所含有的有机物,分解成简单的无机物,归还到无机环境中,在重新被绿色植物利用来制造有机物。 2、食物链:在生态系统中,各种生物之间由于事物关系而形成的一种联系,叫做~。 3、食物网:在一个生态系统中,许多食物链彼此相互交错连接的复杂营养关系,叫做~。 4、生态系统的结构包括两方面的内容:生态系统的成分;食物链和食物网。 5、生态系统一般都包括以下四种成分:非生物的物质和能量(包括阳光、热能、空气、水分和矿物质等),生产者,消费者,分解者。 6、生产者:自养型生物(主要是指绿色植物及化能合成作用的硝化细菌等)。 7、消费者:包括各种动物。它们的生存都直接或间接地依赖于绿色植物制造出来的有机物,所以把它们叫做消费者。消费者属于异养生物。动物中直接以植物为食的草食动物(也叫植食动物)叫做初级消费者;以草食动物为食的肉食动物叫做次级消费者;以小型肉食动物为食的大型肉食动物,叫做三级消费者。 8、分解者:主要是指细菌、真菌等营腐生生活的微生物。 9、生物之间的关系:食物链中的不同种生物之间一般有捕食关系;而食物网中的不同种生物之间除了捕食关系外,还有竞争关系。 10、生态系统中各成分的地位和作用:非生物的物质和能量是生态系统赖以存在的基础,生产者是生态系统中的主要成分,消费者不是生态系统的必备成分,分解者是生态系统的重要成分。 11、消费者等级与营养等级的区别:消费者等级始终以初级消费者为第一等级,而营养等级则以生产者为第一等级(生产者为第一营养级,初级消费者为第二营养级,次级消费者为第三营养级。);同一种生物在食物网中可以处在不同的营养等级和不同的消费者等级;同一种生物在同一食物链中只能有一个营养等级和一个消费者等级,且二者仅相差一个等级。 三、生态系统的能量流动 能量金字塔:可以将单位时间内各个营养级的能量数值,由低到高绘制成图,这样就形成一个金字塔图形,就叫做能量金字塔。 1、起点:从生产者固定太阳能开始(输入能量)。 2、生产者所固定的太阳能的总量=流经这个生态系统的总能量 3、渠道:沿食物链的营养级依次传递(转移能量) 4、生产者固定的太阳能的三个去处是:呼吸消耗,下一营养级同化,分解者分解。对于初级消费者所同化的能量,也是这三个去处。并且可以认为,一个营养级所同化的能量=呼吸散失的能量十分解者释放的能量十被下一营养级同化的能量。但对于最高营养级的情况有所不同。 5、特点:传递方向:单向流动(能量只能从前一营养级流向后一营养级,而不能反向流动);传递效率:逐级递减,传递效率为10%~20%(能量在相邻两个营养级间的传递效率只有10%~20%)。 4、人们研究生态系统中能量流动的主要目的,就是设法调整生态系统的能量流动关系,使能量流向对人类最有益的部分。 5、计算规则:消耗最少要选择食物链最短和传递效率最大20%,消耗最多要选择食物链最长和传递效率最小10%。 四、生态系统的物质循环 1、生态系统的物质循环:在生态系统中,组成生物体的C、H、O、N、P、S等化学元素,不断进行着从无机环境到生物群落,又从生物群落回到无机环境的循环过程。这里说的生态系统是指地球上最大的生态下系统——生物圈,其中的物质循环带有全球性,所以又叫生物地球化学循环。 2、温室效应:大气中CO2越多,对地球上逸散到外层空间的热量的阻碍作用就越大,从而使地球温度升高得越快,这种现象就叫温室效应。 3、碳循环:①碳在无机环境中是以二氧化碳或碳酸盐的形式存在的。②碳在无机环境与生物群落之间是以二氧化碳的形式进行循环的。③绿色植物通过光合作用,把大气中的二氧化碳和水合成为糖类等有机物。生产者合成的含碳有机物被各级消费者所利用。生产者和消费者在生命活动过程中,通过呼吸作用,又把二氧化碳放回到大气中。生产者和消费者死后的尸体又被分解者所利用,分解后产生的二氧化碳也返回到大气中。特点:随大气环流在全球范围内运动,所以碳循环带有全球性。 4、能量流动和物质循环的关系:生态系统的主要功能是进行能量流动和物质循环,能量流经生态系统各个营养级时,流动是单向,不循环的,是逐级递减的。物质循环具有全球性,物质在生物群落与无机环境间可以反复出现,循环运动。能量流动与物质循环既有联系,又有区别,是相辅相承,密不可分的统一整体。 五、生态系统的稳定性 1、生态系统的稳定性:由于生态系统中生物的迁入,迁出及其它变化使生态系统总是在发展变化的,当生态系统发展到一定阶段时,它的结构和功能能够保持相对稳定,我们就把:生态系统具有保持和恢复自身结构和功能相对稳定的能力,称为生态系统的稳定性。 2、抵抗力稳定性:在生物学上就把生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力,称之为抵抗力稳定性。 3、恢复力稳定性:生态系统在遭到外界干扰因素的破坏以后恢复到原状的能力,叫做恢复力稳定性。 4、生物圈II号”实验失败说明:生态系统的结构和功能难以像真正的生物圈那样,长期保持相对稳定,具备生态系统的稳定性。 5、生态系统的稳定性就包括抵抗力稳定性和恢复力稳定性等方面。①抵抗力稳定性的本质是“抵抗干扰、保持原状”;生态系统之所以具有抵抗力稳定性,就是因为生态系统内部具有一定的自动调节能力。生态系统的成分越单纯,营养结构越简单,自动调节能力越小,抵抗力稳定性越低。一个生态系统的自动调节能力是有一定限度的,如果外界因素的干扰超过了这个限度,生态系统的相对定状态就会遭到破坏。 6、抵抗力稳定性与恢复力稳定性之间往往存在着相反的关系。抵抗力稳定性较高的生态系统,恢复力稳定性较低,反之亦然。 7、生物圈是人类生存的唯一环境,而人类活动的干扰正在全球范围内使生态系统偏离稳态,我们要保护并提高生态系统的稳定性。 高一生物知识点总结 篇331、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统。 细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞。 2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→ 高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜 ★3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核 ①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻 ②真核细胞:有核膜,有染色体,如酵母菌,各种动物 注:病毒无细胞结构,但有DNA或RNA 4、蓝藻是原核生物,自养生物 5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质 6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折。 7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同。 ★8、组成细胞的元素 ①大量无素:C、H、O、N、P、S、K、Ca、Mg ②微量无素:Fe、Mn、B、Zn、Mo、Cu ③主要元素:C、H、O、N、P、S ④基本元素:C ⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O ★9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。 ★10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。 (2)还原糖鉴定材料不能选用甘蔗 (3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液) R ★11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2-C-COOH,各种氨基酸的区 H 别在于R基的不同。 ★12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(-NH-CO-)叫肽键。 ★13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数-肽链条数 ★14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。 ★15、每种氨基酸分子至少都含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。 ★16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。 17、蛋白质功能: ①结构蛋白,如肌肉、羽毛、头发、蛛丝 ②催化作用,如绝大多数酶 ③运输载体,如血红蛋白 ④传递信息,如胰岛素 ⑤免疫功能,如抗体 18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(-COOH)与另一个氨基酸分子的氨基(-NH2)相连接,同时脱去一分子水,如图: HOHHH NH2-C-C-OH+H-N-C-COOHH2O+NH2-C-C-N-C-COOH R1HR2R1OHR2 19、 DNARNA ★全称脱氧核糖核酸核糖核酸 ★分布细胞核、线粒体、叶绿体细胞质 染色剂甲基绿吡罗红 链数双链单链 碱基ATCGAUCG 五碳糖脱氧核糖核糖 组成单位脱氧核苷酸核糖核苷酸 代表生物原核生物、真核生物、噬菌体HIV、SARS病毒 ★20、主要能源物质:糖类 细胞内良好储能物质:脂肪 人和动物细胞储能物:糖原 直接能源物质:ATP 21、糖类: ①单糖:葡萄糖、果糖、核糖、脱氧核糖 ②二糖:麦芽糖、蔗糖、乳糖 ★③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞) 脂肪:储能;保温;缓冲;减压 22、脂质:磷脂:生物膜重要成分 胆固醇 固醇:性激素:促进人和动物生殖器官的发育及生殖细胞形成 维生素D:促进人和动物肠道对Ca和P的吸收 ★23、多糖,蛋白质,核酸等都是生物大分子,基本组成单位依次为:单糖、氨基酸、核苷酸。 生物大分子以碳链为基本骨架,所以碳是生命的核心元素。 自由水(95.5%):良好溶剂;参与生物化学反应;提供液体环境; 24、水存在形式运送营养物质及代谢废物 结合水(4.5%) ★25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。 26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。 将细胞与外界环境分隔开 27、细胞膜的功能控制物质进出细胞 进行细胞间信息交流 28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。 ★29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。 30、★叶绿体:光合作用的细胞器;双层膜 ★线粒体:有氧呼吸主要场所;双层膜 核糖体:生产蛋白质的'细胞器;无膜 中心体:与动物细胞有丝分裂有关;无膜 液泡:调节植物细胞内的渗透压,内有细胞液 内质网:对蛋白质加工 高尔基体:对蛋白质加工,分泌 31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。 32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。 维持细胞内环境相对稳定 生物膜系统功能许多重要化学反应的位点 把各种细胞器分开,提高生命活动效率 核膜:双层膜,其上有核孔,可供mRNA通过核仁 结构 33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时 染色质期的两种状态 容易被碱性染料染成深色 功能:是遗传信息库,是细胞代谢和遗传的控制中心 ★34、植物细胞内的液体环境,主要是指液泡中的细胞液。 原生质层指细胞膜,液泡膜及两层膜之间的细胞质 植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁 ★35、细胞膜和其他生物膜都是选择透过性膜 自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯 协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞 ★36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如无机盐、离子 胞吞、胞吐:如载体蛋白等大分子 ★37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。 38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA 高效性 特性专一性:每种酶只能催化一种成一类化学反应 酶作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性, 温度和pH偏高或偏低,酶活性都会明显降低,甚至失活(过高、过酸、过碱) 功能:催化作用,降低化学反应所需要的活化能 结构简式:A-P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键 全称:三磷酸腺苷 ★39、ATP 与ADP相互转化:A-P~P~PA-P~P+Pi+能量 功能:细胞内直接能源物质 40、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程 ★41、有氧呼吸与无氧呼吸比较 有氧呼吸无氧呼吸 场所细胞质基质、线粒体(主要)细胞质基质 产物CO2,H2O,能量CO2,酒精(或乳酸)、能量 反应式C6H12O6+6O26CO2+6H2O +能量C6H12O62C3H6O3+能量 C6H12O62C2H5OH+2CO2+能量 过程第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质 第二阶段:丙酮酸和水彻底分解成CO2 和[H],释放少量能量,线粒 体基质 第三阶段:[H]和O2结合生成水, 大量能量,线粒体内膜第一阶段:同有氧呼吸 第二阶段:丙酮酸在不同酶催化作用 下,分解成酒精和CO2或 转化成乳酸 能量大量少量 ATP分子高能磷酸键中能量的主要来源 42、细胞呼吸应用: 包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸 酵母菌酿酒:选通气,后密封。先让酵田菌有氧呼吸,大量繁殖,再无氧呼吸产生酒精 花盆经常松土:促进根部有氧呼吸,吸收无机盐等 稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡 提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸 破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸 ★43、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能 44、叶绿素a (类囊体薄膜)叶绿素叶绿素b主要吸收红光和蓝紫光 叶绿体中色素胡萝卜素 类胡萝卜素叶黄素主要吸收蓝紫光 45、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。 46、 18C中期,人们认为只有土壤中水分构建植物,未考虑空气作用 1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用 1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气, 但未知释放该气体的成分。 1785年,明确放出气体为O2,吸收的是CO2 1845年,德国梅耶发现光能转化成化学能 1864年,萨克斯证实光合作用产物除O2外,还有淀粉 1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。 ★47、 条件:一定需要光 光反应阶段场所:类囊体薄膜, 产物:[H]、O2和能量 过程:(1)水在光能下,分解成[H]和O2; (2)ADP+Pi+光能ATP 条件:有没有光都可以进行 暗反应阶段场所:叶绿体基质 产物:糖类等有机物和五碳化合物 过程:(1)CO2的固定:1分子C5和CO2生成2分子C3 (2)C3的还原:C3在[H]和ATP作用下,部分还原成糖类,部分又形成C5 联系:光反应阶段与暗反应阶段既区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP。 48、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。 49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成) 异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。 50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。 有丝分裂:体细胞增殖 51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖 ★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化 ★52、 分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA加倍。 前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。 有丝分裂中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比 分裂期较清晰便于观察 后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍 末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。 ★53、动植物细胞有丝分裂区别 植物细胞动物细胞 间期DNA复制,蛋白质合成(染色体复制)染色体复制,中心粒也倍增 前期细胞两极发生纺缍丝构成纺缍体中心体发出星射线,构成纺缍体 末期赤道板位置形成细胞板向四周扩散形成细胞壁不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞 ★54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义。 55、有丝分裂中,染色体及DNA数目变化规律 56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。 ★57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同。 ★58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。 高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物 生长发育所需的遗传信息 高度分化的动物细胞核具有全能性,如克隆羊 59、细胞内水分减少,新陈代谢速率减慢 细胞内酶活性降低 细胞衰老特征细胞内色素积累 细胞内呼吸速度下降,细胞核体积增大 细胞膜通透性下降,物质运输功能下降 60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。 能够无限增殖 ★61、癌细胞特征形态结构发生显著变化 癌细胞表面糖蛋白减少,容易在体内扩散,转移 62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗。 高一生物知识点总结 篇34一、被动运输:物质进出细胞,顺浓度梯度的扩散,称为被动运输。 (1)自由扩散:物质通过简单的扩散作用进出细胞 (2)协助扩散:进出细胞的物质借助载体蛋白的扩散 二、主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。逆浓度梯度的运输。保证了活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排除代谢废物和有害物质。 三、实验 1、比较过氧化氢酶在不同条件下的分解(过程见课本P79) 实验结论:酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多 控制变量法:变量、自变量、因变量、无关变量的定义。 对照实验:除一个因素外,其余因素都保持不变的实验。 原则:对照原则,单一变量的原则。 2、影响酶活性的条件(要求用控制变量法,自己设计实验) 建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究PH对酶活性的影响。 1.细胞膜的主要成分:蛋白质、脂质(和少量的糖类) (各种膜所含蛋白质、脂质的比例与膜的功能有关,功能越复杂的细胞膜,蛋白质的种类和数量越多) 2.细胞膜的'功能:①将细胞与外界环境隔开(以保障细胞内部环境的相对稳定);②控制物质进出细胞(物质能否通过细胞膜,并不是取决于分子的大小,而是根据细胞生命活动的需要);③进行细胞间的信息交流。 3.细胞间信息交流的方式多种多样,常见的3种方式:①细胞分泌的化学物质如激素,随血液运输到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞;②相邻两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞(如精子和卵细胞之间的识别和结合);③相邻两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞(如高等绿色植物细胞之间通过胞间连丝相互连接,也有信息交流的作用) 4.细胞间的信息交流,大多与细胞膜的结构和功能有关。 5.制备纯净的细胞膜常用的材料:应选用人和哺乳动物成熟的红细胞,原因是:因为人和其他哺乳动物成熟的红细胞中没有细胞核和众多的细胞器;制备的方法:将选取的材料放入清水中,由于细胞内的浓度大于外界溶液浓度,细胞将吸水涨破,再用离心的方法获得纯净的细胞膜。 6.癌细胞的恶性增殖和转移与癌细胞膜成分的改变有关。 细胞癌变的指标之一是细胞膜成分发生改变,产生甲胎蛋白(AFP)、癌胚抗原(CEA)等物质超过正常值 7.植物细胞壁的主要成分:纤维素和果胶;功能:对植物细胞有支持和保护的作用。 8.细胞质包括细胞器和细胞质基质。 细胞质基质的成分:水、无机盐、脂质、糖类、氨基酸和核苷酸等,还有很多酶。 功能:细胞质基质是活细胞进行新陈代谢的主要场所,细胞质基质为新陈代谢的进行提供所需要的物质和一定的环境条件,如提供ATP、核苷酸、氨基酸等。 9.分离各种细胞器的方法:差速离心法。 10.线粒体内膜向内折叠形成“嵴”,增大细胞内膜面积;在线粒体的内膜、基质中含有与有氧呼吸有关的酶,分别是有氧呼吸第三、二阶段的场所,生物体95%的能量来自线粒体,又叫“动力车间”。 11.叶绿体只存在于植物的绿色细胞中。扁平的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。 12.线粒体和叶绿体的相同点:①具有双层膜结构②都含少量的DNA和RNA,具有遗传的相对独立性③都能产生ATP,都属于能量转换器。 13.内质网:在结构上内连核膜,外连细胞膜;功能:①增大细胞内的膜面积②是细胞内蛋白质合成和加工,以及脂质合成的车间(内质网是蛋白质空间结构形成的场所) 14.核糖体:无膜结构,是合成蛋白质的场所。附着在内质网上的核糖体合成的是胞外蛋白(即分泌蛋白如消化酶、胰岛素、生长激素、抗体等);游离的核糖体合成的是胞内蛋白(如呼吸氧化酶、血红蛋白等)。 15.高尔基体:主要是对来自内质网的蛋白质进行加工,分类,包装,运输。(动植物细胞共有的细胞器,但功能不同:植物:与细胞壁的形成有关;动物:与细胞分泌物的形成有关) 16.中心体:存在于动物和某些低等植物(如衣藻、团藻等)中。 无膜结构,由垂直的两个中心粒及周围物质组成,与细胞的有丝分裂有关。 17.液泡:单层膜,成熟的植物有中央大液泡。功能:贮藏(营养、色素等)、保持细胞形态 18.溶酶体:消化车间,内含许多水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒病菌。 高一生物知识点总结 篇351、病毒(Virus)是一类没有细胞结构的生物体。主要特征: ①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见; ②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒; ③、专营细胞内寄生生活; ④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。 2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。 3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。 |
随便看 |
|
范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。