网站首页  词典首页

请输入您要查询的范文:

 

标题 初三数学总结300字
范文

初三数学总结300字(通用15篇)

初三数学总结300字 篇1

  时间如流水般轻轻划过指尖,转眼间,我已经是一名初三学生,与数学的缘分已紧紧联系了九年。今天我想说说我学习数学的心得。

  数学是一门纯粹的、抽象的,但与实际生活紧密相连的学科。可以说,学好了数学,就掌握了命运的喉咙。学数学不一定要有极高的智商,而应重视数学知识的细节及平时解题中的错误,进行归纳、概括,从而举一反三。做数学题不一定非得题海战术,既浪费时间又浪费精力,所以做数学题要少而精,少而频,温故而知新。

  我认为这些还是远远不够的,要领悟它的真谛,还要做到以下几点:

  1、做到预习、温习、复习三部曲。即预习第二天所要讲解的内容;温习课堂老师

  所讲的内容;复习总结已往学过的'知识点,数学方法等内容。做到三位一体,三步同效,打下坚实的数学基础。

  2、养成自主学习习惯。不要怀着一种侥幸或悲观的态度吴学习,二应注意培养兴趣,让自己主动去学,让须学变需学,这将极大提高学习效率。

  3、注重于实际相联系,前面说过,数学是一门抽象的学科,我们所要做到的就是把抽

  象的理论知识融入到实际生活中去,为生活提供便利。学习数学的主要方法就是理解,在理解上加工。题目是千变万化的,而方法却是可数的。只要掌握好了学习方法,数学方法,学好数学自然就简单了。

初三数学总结300字 篇2

  我不是数学家,我对数学的了解也不多,但我想说说我所学的数学。

  学习数学是一件轻松快乐的事情。在数学的学习中,“大事化小小事化了”的思维方式很重要。比如你撞见一道相当复杂的题目,那么把它分化成几个简单的小问题无疑是很明智的。

  当然,就如同意盖大楼一样,基础十分重要。就现在的考试来说,基础题亦是重点。只有掌握基础知识,才能灵活运用,并对各种题目进行变形、探究。

  什么是探究中最重要的呢?我认为是挑战精神。只要有挑战精神才能让你不畏难点,攻破难点,急速向前。但挑战精神不是万能药,也不是一味地蛮干,也要伴随着谨慎的思考,这才是终极奥义。

初三数学总结300字 篇3

  中位线概念

  (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

  (2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

  注意:

  (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。

  (2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。

  (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。

  中位线定理

  (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

  (2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

  中位线定理推广

  三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。

初三数学总结300字 篇4

  用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。

  常用统计图的优点

  1、条形统计图:可以清楚的看出各种数量的多少。

  2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

  3、扇形统计图:能够清楚的'反映出各部分数量同总数之间的关系。

  扇形的面积大小

  在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

  易错分析

  【易错题1】为了清楚地看出各年级人数应采用统计图,需要清楚地看出学校各年级的人数占全校总人数的百分比情况应采用统计图,记录一天气温变化情况采用统计图比较合适。

  【错因分析】答案:扇形,折线,条形。

  本题主要考察学生对三种常用统计图的理解情况。从回答情况看,学生没有理解三种统计图的特点和用途,不会根据实际情况灵活选择合适的统计图,因此导致出错。

  【思路点拨】条形统计图的特点是用直条长短表示各个数量的多少;折线统计图的特点是能清楚地表示数量增减变化的情况;扇形统计图的特点是表示各部分与总数的百分比,以及部分与部分之间的关系。

  【易错题2】要统计牛奶中各种营养成份所占的百分比情况,你会选用。

  ①条形统计图②折线统计图③扇形统计图④复式统计图

  【错因分析】本题主要考察学生对扇形统计图的掌握情况。学生容易选择其他类型的统计图。

初三数学总结300字 篇5

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aC.0

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

初三数学总结300字 篇6

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

初三数学总结300字 篇7

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质。

  (2)矩形的四个角都是直角。

  (3)矩形的对角线相等。

  (4)矩形是轴对称图形。

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形。

  (2)定理1:有三个角是直角的四边形是矩形。

  (3)定理2:对角线相等的平行四边形是矩形。

  4、矩形的面积:S矩形=长×宽=ab

  初三数学重点知识点(四)

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

初三数学总结300字 篇8

  1、概念:

  把一个图形绕着某一点O转动一个角度的`图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角。

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等。

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角。

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P(—x,—y)。

初三数学总结300字 篇9

  定义

  只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle—variable quadratice quation)。

  一元二次方程有三个特点:

  (1)含有一个未知数;

  (2)且未知数的最高次数是2;

  (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程。里面要有等号,且分母里不含未知数。

  补充说明

  3、方程的两根与方程中各数有如下关系:X1+X2=—b/a,X1X2=c/a(也称韦达定理)。

  4、方程两根为x1,x2时,方程为:x2—(x1+x2)X+x1x2=0(根据韦达定理逆推而得)。

  5、在系数a0的情况下,b2—4ac0时有2个不相等的实数根,b2—4ac=0时有两个相等的实数根,b2—4ac0时无实数根。(在复数范围内有两个复数根)。

  一般式

  ax2+bx+c=0(a、b、c是实数,a0)

  例如:x2+2x+1=0

  配方式

  a(x+b/2a)2=(b2—4ac)/4a

  两根式(交点式)

  a(x—x1)(x—x2)=0

初三数学总结300字 篇10

  等腰三角形的判定方法

  1.有两条边相等的三角形是等腰三角形。

  2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  标准差与方差

  极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。

  计算器——求标准差与方差的一般步骤:

  1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。

  2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

  3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

  4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

  5.标准差的平方就是方差。

初三数学总结300字 篇11

  1、图形的相似

  相似多边形的对应边的比值相等,对应角相等;

  两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

  相似比:相似多边形对应边的比值。

  2、相似三角形

  判定:

  平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

  如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

  如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

  3、相似三角形的周长和面积

  相似三角形(多边形)的周长的比等于相似比;

  相似三角形(多边形)的面积的比等于相似比的平方。

  4、位似

  位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

初三数学总结300字 篇12

  三角形的外心定义:

  外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

  外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

  三角形的外心的性质:

  1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

  2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;

  3、锐角三角形的外心在三角形内;

  钝角三角形的外心在三角形外;

  直角三角形的外心与斜边的中点重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

初三数学总结300字 篇13

  直角三角形的判定方法:

  判定1:定义,有一个角为90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

  判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

  判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

  判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

  判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

初三数学总结300字 篇14

  1.代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2.整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3.单项式与多项式

  没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如=x,=│x│等。

  4.系数与指数

  区别与联系:①从位置上看;②从表示的意义上看;

  5.同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6.根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

  7.算术平方根

  ⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8.同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9.指数

  ⑴(—幂,乘方运算)。

  ①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)。

  ⑵零指数:=1(a≠0)。

  负整指数:=1/(a≠0,p是正整数)。

初三数学总结300字 篇15

  ①位置的确定与平面直角坐标系

  位置的确定

  坐标变换

  平面直角坐标系内点的特征

  平面直角坐标系内点坐标的符号与点的象限位置

  对称问题:P(x,y)→Q(x,-y)关于x轴对称P(x,y)→Q(-x,y)关于y轴对称P(x,y)→Q(-x,-y)关于原点对称

  变量、自变量、因变量、函数的定义

  函数自变量、因变量的取值范围(使式子有意义的条件、图象法)56、函数的图象:变量的变化趋势描述

  ②一次函数与正比例函数

  一次函数的定义与正比例函数的定义

  一次函数的图象:直线,画法

  一次函数的性质(增减性)

  一次函数y=kx+b(k≠0)中k、b符号与图象位置

  待定系数法求一次函数的解析式(一设二列三解四回)

  一次函数的平移问题

  一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)

随便看

 

范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。

 

Copyright © 2004-2023 triyia.com All Rights Reserved
更新时间:2025/2/6 15:12:02