标题 | 数学椭圆总结 |
范文 | 数学椭圆总结(精选3篇) 数学椭圆总结 篇1⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用 ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 数学椭圆总结 篇2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角 圆的标准方程(-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程2+y2+D+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2py2=-2p2=2py2=-2py 直棱柱侧面积S=ch斜棱柱侧面积S=c'h 正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2 圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl 弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr 锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=sh圆柱体V=pr2h 乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系1+2=-b/a12=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根 b2-4ac>0注:方程有两个不等的实根 b2-4ac<0注:方程没有实根,有共轭复数根 高二数学椭圆公式知识点篇三 两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB 数学椭圆总结 篇31、新课程改革的核心是促进学生学习方式的变革。怎样改变学生单一的接受式学习?新课程的基本理念之一是“注重科学探究,倡导学习方式多样化”。通过探究性学习,合作性学习,体验性学习等实现学习方式的多样化,其实质是倡导“研究为中心”进行教学。要由重知识传授向重学生发展转变,由重教师教向重学生学转变,由重结果向重过程转变。 2、本节课书上内容较简单,如果仅按书上安排照讲,学生也能掌握本节知识,但学生的能力的不到提高。新课标强调,教师应不只是知识的传授者,更是教学的组织者和引导者,课堂教学不仅是基本知识和基本技能的传授,还要重视获取知识的过程。 椭圆是常见的曲线,学生通过引言课及日常生活的经验,对椭圆已有一定的认识。为了使学生掌握椭圆的本质特征,以便得出椭圆的定义,教学过程中特别介绍了两种画椭圆的方法,一种是用一根细绳画椭圆的方法,主要是考虑到材料(细绳)取得比较容易,操作也比较简便,能调动学生积极性,培养学生动手能力;另一种是用计算机软件画椭圆的方法,这个画法的好处是便于揭示椭圆形成的本质特征。(即便于观察出椭圆上点所要满足的几何条件),也为以后学习椭圆性质和双曲线打下伏笔,突出双曲线与椭圆的区别与联系。 3、概括出椭圆定义是本节的重点。本节课,我放大了椭圆定义建立的过程。首先让学生观看“神舟”六号发射录像,使学生在感叹祖国科技发展的辉煌成就的激情中认识椭圆、感受椭圆。生活中的实例及多彩的多媒体图片可激发学生的学习兴趣,充分调动学生主动参与的积极性。之后让学生探索如何借助手中的细绳画椭圆,从实践中体会椭圆上的点所满足的条件,逐渐把图形语言转化为文字语言。这样,不仅完善了椭圆的定义,也有助于培养学生质疑,养成勤于动脑的良好思维习惯。有助于帮助学生自主学习,学会学习。事实上,沿着学生的思维轨道展开思维,才是对学生最大的尊重,才是以人为本。 4、椭圆标准方程的推导是本节课的难点。建立直角坐标系、建立椭圆标准方程是两个重要环节。本课中,我尽可能多地为寻求适当坐标系和建立椭圆标准方程提供时间和空间。首先给学生建系的机会,让他们充分暴露自然思维,让他们在自己认为简洁的坐标系下建立椭圆的方程。通过展示推导过程,比较化简结果,让学生明白哪种坐标系更合适,这样,学生可以在对比、观察、思维的基础上提升自己的思维,使新知识与旧知识尽可能产生天然的联系,而不是人为的告诉其正确的结果,把经验强加给学生。 |
随便看 |
|
范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。