标题 | 职校高一数学教学计划 |
范文 | 职校高一数学教学计划(通用32篇) 职校高一数学教学计划 篇1一、指导思想: 使学生进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。 1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。 2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。 3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。 4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。 5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。 6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点: 1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。 2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。 4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析: 1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。 2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。 3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、学情分析: 两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。 同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。 五、教学措施: 1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。 2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。 5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。 6、重视数学应用意识及应用本事的培养。 职校高一数学教学计划 篇2一、教学内容 本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。 二、教学目标与要求 认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。 1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的`、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。 2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。 3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。 4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。 5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。 职校高一数学教学计划 篇3一、指导思想 准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法.针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础. 二、高一上册数学教学教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点: 1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情. 2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神. 3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神. 4.“时代性”与“应用性”:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识. 三、高一上册数学教学教法分析: 1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的. 2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式. 3.在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯. 四、学情分析 高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着.他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长.面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望.我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡.从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法. 五、高一上册数学教学教学措施: 1、激发学生的学习兴趣.由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步. 2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考. 职校高一数学教学计划 篇4本学期我担任高一(3)、(4)两班的数学教学工作,两班学生共有138人。大部分学生初中的基础较差,整体水平不高。从上课两周来看,学生的学习进取性还比较高,爱问问题的学生比较多;但由于基础知识不太牢固,没有良好的学习习惯,自控本事较差,不能正确地定位自我;所以上课效率一般,教学工作有必须的难度,为把本学期教学工作做好,制定如下教学工作计划。 一、教学质量目标 (1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。 (2)培养学生的逻辑思维本事、运算本事、空间想象本事,以及综合运用有关数学知识分析问题和解决问题的本事。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的本事;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的本事。 (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。 (4)使学生具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。 (5)学会经过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。 (6)本学期是高一的重要时期,教师承担着双重职责,既要不断夯实基础,加强综合本事的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。 二、教学目标、 (一)情感目标 (1)经过分析问题的方法的教学,培养学生的学习的兴趣。 (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。 (3)在探究基本函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时间和空间给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。 (二)本事要求 1、培养学生记忆本事。 (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (2)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。 2、培养学生的运算本事。 (1)经过概率的训练,培养学生的运算本事。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。 (3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。 (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算本事。 三、学情分析 高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。 四、促进目标达成的重点工作及措施 重点工作: 认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要资料,坚持抓两头、带中间、整体推进,使每个学生的数学本事都得到提高和发展。 分层推进措施 1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。 2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。 4、让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备 5、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。 6、加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育;同时重视数学应用意识及应用本事的培养。 7、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。 8、注意研究学生,做好初、高中学习方法的衔接工作。集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。 职校高一数学教学计划 篇5一、指导思想 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展和社会进步的需要。具体目标如下: 1.突出数学基础知识、基本技能、基本思想方法的培养 对数学基础知识和基本技能的培养,要贴近教学实际,既注意全面,又突出重点,注重知识内在联系以及中学数学中所蕴涵的数学思想方法的培养。 2.重视数学基本能力的培养 数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力。根据高一上学期的内容,侧重以下几个方面: (1)运算求解能力是思维能力和运算技能的结合,主要包括数的计算、估算和近似计算,式子的组合变形与分解变形,以及能够针对问题探究运算方向、选择运算公式、确定运算程序等。 (2)抽象概括能力的培养要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或做出新的判断。 (3)推理论证能力的培养要求是:能够根据已知的事实和已经获得的正确的数学命题,运用演绎推理,论证某一数学命题的真假性。 (4)数据处理能力是指会收集、整理、分析数据,能够从大量数据中提取对研究问题有用的信息并做出判断,以解决给定的实际问题。 3.注重数学的应用意识和创新意识的培养 培养数学的应用意识,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决。培养学生的创新意识,鼓励学生创造性地解决问题。 4.提高学生学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。逐步认识数学的科学价值、应用价值和文化价值,崇尚数学的理性精神,体会数学的美学意义,形成批判性的思维习惯,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点 高一上使用的是人教版《必修1》和《必修4》,这套教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现了基础性、时代性、典型性和可接受性等,具有如下特点: 1.亲和力:以生动活泼的呈现方式,激发学习兴趣和美感,每章配有优美的章头图和诗一般的引言和富有哲理的数学家名言。 2.问题性:每节围绕问题展开,设置问题情景,培养问题意识,以问题为切入点,形成问题链,来组织课堂教学 3.思想性和应用性:通过不同数学内容的联系和启发,强调类比、推广、化归和特殊化等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培养理性精神;取材具有时代感、现实感,加强数学活动,发展应用意识。 4.可操作性:教材编写体例就是以一堂课的全过程展开,易于学生自学、教师编写教案,大致一节内容占三页。 三、学情分析 基本状况:本年级共14个行政班级,其中2个实验班,12个普通班。学生数共840人,由于初高中分别进行了课改,高中教材与初中教材衔接度远远不够,需在新授的同时适时补充一些内容,因此时间上略紧。同时,因其底子薄弱,教学时必须注重基础,夯实每个知识点。 四、教学措施 1.加强自我学习,特别是两个纲领性文件——《普通高中数学课程标准》,《普通高中数学考试大纲》,准确把握教学要求,提高教学效率,不做无用功; 2.加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;平行班级统一进度,统一要求,统一作业,统一考试; 3.认真贯彻教学六认真的要求,精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养; 4.加强衔接教学,适量打破模块式教学,使学生得到和谐的发展。 五、教学进度 略 职校高一数学教学计划 篇6金色九月,又是一年开学季,本人这学期担任两个直升班高一(9)高一(11)班的教学工作,现将这学期的教学工作计划,包括对教学思想、教材、教法和学情的分析等等作如下安排。 一、教学思想 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。 1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。 2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。 3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。 4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。 5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是北师大版,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点: 1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。 2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。 4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析: 1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。 2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。 3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、学情分析: 高一(9)、高一(11)两个直升班,学习情景良好,学生学习进取性很高,但自我控制本事不强,个别同学基础薄弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。 五、教学措施: 1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。 2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。 5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。 6、重视数学应用意识及应用本事的培养。 俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好必须的教学计划很有必要。 我相信经过我们大家共同努力,师生其心,高一(9)、高一(11)两班必须会取得梦想的成绩! 职校高一数学教学计划 篇7一、教学目标. (一)情意目标 (1)通过分析问题的方法的教学,培养学生 的学习的兴趣。 (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。 (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。 (二)能力要求 1、培养学生记忆能力。 (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。 2、培养学生 的运算能力。 (1)通过概率的训练,培养学生 的运算能力。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生 的运算能力。 (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。 (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算能力。 3、培养学生 的思维能力。 (1)通过对简易逻辑的教学,培养学生 思维的周密性及思维的逻辑性。 (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。 (3)通过不等式、函数的引伸、推广,培养学生 的创造性思维。 (4)加强知识的横向联系,培养学生 的数形结合的能力。 (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。 (三)知识目标 1.集合、简易逻辑 (1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义. (3)掌握一元二次不等式、绝对值不等式的解法。 2.函数 (1)了解映射的概念,理解函数的概念. (2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 3.数列 (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题. (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题. 二、教学重点 1、集合、子集、补集、交集、并集.一元二次不等式的解法 四种命题.充分条件和必要条件. 2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用. 3.等差数列及其通项公式.等差数列前n项和公式. 等比数列及其通项公式.等比数列前n项和公式. 三、教学难点 1. 四种命题.充分条件和必要条件 2. 反函数、指数函数、对数函数 3. 等差、等比数列的性质 四、工作措施. 1、抓好课堂教学,提高教学效益。 课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。 (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。 (2)、加大课堂教改力度,培养学生 的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。 职校高一数学教学计划 篇8本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。 一、教学目标: (一)知识与技能 1.掌握不等式的三条基本性质。 2.运用不等式的基本性质对不等式进行变形。 (二)过程与方法 1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。 2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。 (三)情感态度与价值观 通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。 二、教学重难点 教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。 教学难点: 不等式基本性质3的探索与运用。 三、教学方法:自主探究——合作交流 四、教学过程: 情景引入:1.举例说明什么是不等式? 2.判断下列各式是否成立?并说明理由。 ( 1 )若x-4=12, 则x=16 ( 2 )若3x=12, 则 x=4 ( 3 )若x-4>12 则 x>16 ( 4 )若3x>12则 x>4 【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。 温故知新 问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗? 等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。 估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。 【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。 2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住? 【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。 3.小明的困惑: 小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢? 小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。 【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。 4.火眼金睛 ①a>2, 则3a___2a ②2a>3a,则 a ___ 0 【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。 课堂小结: 这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。 【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。 思考题:你来决策 咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗? 职校高一数学教学计划 篇9教学目标 1、通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。 2、使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。 3、培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。 教学重点、难点 重点:幂函数的性质及运用 难点:幂函数图象和性质的发现过程 教学方法: 问题探究法 教具:多媒体 教学过程 一、创设情景,引入新课 问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数) 问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题) 二、新课讲解 由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s,v=t-1都是自变量的若干次幂的形式。 教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。 幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。 1、幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数例1判别下列函数中有几个幂函数? ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨(由学生独立思考、回答) 2、幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容? (学生讨论,教师引导。学生回答。) 3、幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域? (学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。) 例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。) 4、上述函数①y=x ②y= ③y=x ④y=x的单调性如何?如何判断? (学生思考,引导作图可得。并加上y=x和y=x-1图象)接下来,在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1 让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。) 教师总评:幂函数的性质 (1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1), (2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数, (3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。 5、通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质? 学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。 例3巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。 例4简单应用1:比较下列各组中两个值的大小,并说明理由: ①0、75,0、76; ②(-0、95),(-0、96); ③0、23,0、24; ④0、31,0、31 例5简单应用2:幂函数y=(m -3m-3)x在区间上是减函数,求m的值。 例6简单应用2: 已知(a+1)<(3-2a),试求a的取值范围。 课堂小结 今天的学习内容和方法有哪些?你有哪些收获和经验? 1、幂函数的概念及其指数函数表达式的区别 2、常见幂函数的图象和幂函数的性质。 布置作业: 课本p、73 2、3、4、思考5 相关范文 职校高一数学教学计划 篇10教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性. 教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 材料一:幂函数定义及其图象. 一般地,形如 的函数称为幂函数,其中 为常数. 幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析. 下面我们举例学习这类函数的一些性质. 作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律. 定义域 值域 奇偶性 单调性 定点 师:引导学生应用画函数的性质画图象,如:定义域、奇偶性. 师生共同分析,强调画图象易犯的错误. 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在轴上方无限地逼近 轴正半轴. 例1、求下列函数的定义域; 例2、比较下列两个代数值的大小: [例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 练习 1.利用幂函数的性质,比较下列各题中两个幂的值的大小: 2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明. 3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间. 4.用图象法解方程: 1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:. 2.在同一坐标系内,作出下列函数的图象,你能发现什么规律? 职校高一数学教学计划 篇11一、指点思想: 在九年义务教育数学课程的根底上,进一步领会数学对开展本身思想才能的作用,领会数学对推进社会提高和迷信开展的意义以及数学的文明价值,进步做为将来公民所必要的数学素养,以满足本人开展与社会提高的需求。 二、教学详细目的 1、取得必要的数学根底知识和根本技艺,了解根本的数学概念、数学结论的实质,理解概念、结论等发生的背景、使用,领会其中所蕴涵的数学思想和办法,以及它们在后续学习中的作用。经过不同方式的自主学习、探求活动,体会数学发现和缔造的历程。 2、进步空间想像、笼统概括、推实际证、运算求解、数据处置等根本才能。 3、进步数学地提出、剖析和处理Issue(问题)(包括容易的实践Issue(问题))的才能,数学表达和交流的才能,开展独立获得数学知识的才能。 4、开展数学使用认识和创新认识,力争对理想世界中蕴涵的少许数学形式实行思考和作出判别。 5、进步学习数学的兴致,树立学好数学的决心,构成锲而不舍的研究肉体和迷信态度。 6、具有一定的数学视野,逐渐认得数学的迷信价值、使用价值和文明价值,构成批判性的思想习气,崇尚数学的感性肉体,领会数学的美学意义,从而进一步树立辩证唯心主义和历史唯心主义世界观。 三、教材特点: 我们所运用的教材是北师大版《普通高中课程规范实验教科书·数学1(?)》,它在坚持我国数学教育优秀保守的前提下,仔细处置承继,借签,开展,创新之间的关系,强调了Issue(问题)提出,笼统概括,剖析了解,思考交流等探讨性学习进程。详细特点如下: 1、“亲和力”:以生动生动的展现方式,激起兴致和美感,引发学习热情。 2、“Issue(问题)性”:专门布置了“课题学习”和“探求活动”,培育Issue(问题)认识,孕育创新肉体。 3、“迷信性”与“思想性”:经过不同数学内容的联络与启示,强调类比,推行,特别化,化归等思想办法的运用,学习数学地思考Issue(问题)的方式,进步数学思想才能,培育感性肉体。 4、“时代性”与“使用性”:教材中有“信息技巧提议”和“信息技巧使用”,以具有时代性和理想感的素材创设情境,增强数学活动,开展使用认识。 5、“人文使用价值性”:编写了少许阅读资料,开辟先生视野,从数学史的开展脚印中获得养分和动力,片面感受数学的迷信价值、使用价值和文明价值。 四、教法剖析: 1、选取与内容亲密相干的,典型的,丰厚的和先生熟习的素材,用生动生动的言语,创设可以表现数学的概念和结论,数学的思想和办法,以及数学使用的学习情境,使先生发生对数学的亲切感,引发先生“看个终究”的激动,以到达培育其兴致的目的。 2、经过“察看”,“思考”,“探求”等栏目,引发先生的思考和探究活动,实在改良先生的学习方式。 3、在教学中强调类比,推行,特别化,化归等数学思想办法,尽能够养成其逻辑思想的习气。 五、教学措施: 1、激起先生的学习兴致。由数学活动、故事、吸引人的课、合理的请求、师生说话等途径树立先生的学习决心,进步学习兴致,在客观作用下上升和提高。 2、留意从实例动身,从理性进步到感性;留意运用比照的办法,重复比拟相近的概念;留意联合直观图形,解释笼统的知识;留意从已有的知识动身,启示先生思考。 3、增强培育先生的逻辑思想才能就处理实践Issue(问题)的才能,以及培育进步先生的自学才能,养成擅长剖析Issue(问题)的习气,实行辨证唯心主义教育。 4、抓住公式的推导和内在联络;增强温习检验任务;抓住典型例题的剖析,讲清解题的关键和根本办法,注重进步先生剖析Issue(问题)的才能。 5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法 6、注重数学使用认识及使用才能的培育。 六、教学进度布置 依据县局一致布置。 职校高一数学教学计划 篇12新学期已经开始,在学校工作总体思路的指导下,现将本学期数学组工作进行规划、设想,力争使本学期的工作扎实有效,为学校的发展做出新的贡献。 一、指导思想 以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。 二、工作目标 1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。 2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。 3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。 4、组织好学生的数学实践活动,以调动学生学习用心性,丰富学生课余生活,促进其全面发展。 三、主要工作 1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。 备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布学校网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。 每一位教师在个人研究和群众备课的基础上构成适合自我、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。 提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1-2篇较高水平的反思或教学案例,及时发布在向学校网上,学校将及时进行评审。 教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在学校网数学组板块中的留言板中。 2、课堂教学课堂是教学的主阵地。教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。课堂上要用心的创设有效的教学情境,要重视学习方法、思考方法的渗透与指导,重视数学知识的应用性。学校将继续透过听“推门课”促进课堂教学水平的提高,发现教学新秀。 公开课力求有特点,能侧重一个教学问题,促进组内教师的研讨。一学期做到每人一节,年轻教师上两节。课堂对于比较成熟的公开课或研讨课鼓励大家录像,保存资料,及时地向学校网推荐。 职校高一数学教学计划 篇13一、指导思想 准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。 二、教学建议 1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。 2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。 3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。 4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。 5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。 三、教学内容 第一章集合与函数概念 1.通过实例,了解集合的含义,体会元素与集合的属于关系。 2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 3.理解集合之间包含与相等的含义,能识别给定集合的子集。 4.在具体情境中,了解全集与空集的含义。 5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 10.通过具体实例,了解简单的分段函数,并能简单应用。 11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 12.学会运用函数图象理解和研究函数的性质。 课时分配(14课时) 第二章基本初等函数(I) 1.通过具体实例,了解指数函数模型的实际背景。 2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。 5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。 6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。 7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。 课时分配(15课时) 第三章函数的应用 1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。 课时分配(8课时) 考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。 职校高一数学教学计划 篇14一、具体目标: 1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。 2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。 3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。 4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。 5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。 6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学…… 二、本学期要到达的教学目标 1、双基要求: 在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其资料反映出来的数学思想和方法。在基本技能方面能按照必须的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。 2、本事培养: 能运用数学概念、思想方法,辨明数学关系,构成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。 3、思想教育: 培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。 高一数学教学计划上学期 篇6 一、具体目标: 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学 二、本学期要达到的教学目标 1.双基要求: 在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。 2.能力培养: 能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。 3. 思想教育: 职校高一数学教学计划 篇15一、教材分析 必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用。 必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系; 二、学生分析 较去年而言,今年高一学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。 三、教学目的要求 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。 2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。 3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。 4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。 四、完成教学任务和提高教学质量的具体措施 积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。 职校高一数学教学计划 篇16一、教学目标 准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。 二、教材分析 1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。 2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。 3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。 4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。 5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。 三、教学内容 第一章 集合与函数概念 1.通过实例,了解集合的含义,体会元素与集合的“属于”关系。 2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 3.理解集合之间包含与相等的含义,能识别给定集合的子集。 4.在具体情境中,了解全集与空集的含义。 5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 10.通过具体实例,了解简单的分段函数,并能简单应用。 11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 12.学会运用函数图象理解和研究函数的性质。 课时分配(14课时) 1.1.1 集合的含义与表示 约1课时 9月1日 1.1.2 集合间的基本关系 约1课时 9月4日 1.1.3 集合的基本运算 约2课时 9月12日小结与复习 约1课时 1.2.1 函数的概念 约2课时 1.2.2 函数的表示法 约2课时 9月13日 1.3.1 单调性与最大(小)值 约2课时 1.3.2 奇偶性 约1课时 9月25日小结与复习 约2课时 第二章 基本初等函数(I) 1.通过具体实例,了解指数函数模型的实际背景。 2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。 5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。 6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。 7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。 课时分配(15课时) 2.1.1 引言、指数与指数幂的运算 约3课时 9月27日—30日 2.1.2 指数函数及其性质 约3课时 10月8日—10日 2.2.1 对数与对数运算 约3课时 10月11日—14日 2.2.2 对数函数及其性质 约3课时 10月15日—18日 2.3 幂函数 约1课时 10月19日—24日 小结 约2课时 第三章 函数的应用 1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。 课时分配(8课时) 3.1.1 方程的根与函数的零点 约1课时 10月25日 3.1.2 用二分法求方程的近似解 约2课时 10月26日—27日 3.2.1 几类不同增长的函数模型 约2课时 10月30日 3.2.2 函数模型的应用实例 约2课时 11月3日 小结 约1课时 考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。 职校高一数学教学计划 篇17本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。 I这是指数函数在本章的位置。 指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。 指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。 Ⅱ.教学目标设置 1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。 2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。 3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。 4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。 Ⅲ.学生学情分析 授课班级学生为南京师大附中实验班学生。 1。学生已有认知基础 学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。 2。达成目标所需要的认知基础 学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。 3。难点及突破策略 难点:1。 对研究函数的一般方法的认识。 2。 自主选择底数不当导致归纳所得结论片面。 突破策略: 1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。 2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。 3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。 Ⅳ.教学策略设计 根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。 学生的自主学习,具体落实在三个环节: (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。 (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。 (3)性质应用阶段,学生自主举例说明指数函数性质的应用。 研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。 Ⅴ.教学过程设计 1。创设情境建构概念 师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗? 师:大家知道细胞分裂的规律吗?(出示情境问题) [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系? [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系? [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。 师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗? 〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式? [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。 [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。 [教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。 Ⅵ.教后反思回顾 一、对于指数函数概念的认识 指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。 二、对于培养学生思维习惯的考虑 在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。 三、关于设计定位的反思 本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。 职校高一数学教学计划 篇18一、指导思想 在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点 1、“亲和力“:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。 2、“问题性“:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3、“科学性“与“思想性“:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。 4、“时代性“与“应用性“:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析 1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟“的冲动,以达到培养其兴趣的目的。 2、通过“观察“,“思考“,“探究“等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。 3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、学情分析 高一班学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。 职校高一数学教学计划 篇19一、指导思想 本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的`成绩。 二、教学目标、 (一)情意目标 (1)通过分析问题的方法的教学,培养学生的学习的兴趣。 (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。 (3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。 (二)能力要求 1、培养学生记忆能力。 (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示三角函数有关概念、公式和图形的对应关系,培养记忆能力。 2、培养学生的运算能力。 (1)通过概率的训练,培养学生的运算能力。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。 (3)通过算法初步,算法步骤;程序框图(起始框,判断框,附值框);语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。 (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算能力。 三、具体措施 1、期中考前上好第一册(必修3),期中考后完成好必修4。 2、抓好数学补差,培优活动各班在星期1或星期4的下午。 3、立足于教材。 4、要求学生完成课后练习及每一章课后习题。 5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。 6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。 7、抓好竞赛辅导,时间定于周三、周四的提前时间,周六的下午1点到3点。 8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次。 9、上学期必修4的学分认定考试补考及落实工作。 10、响应学校教务处的备课计划安排,督促组员落实工作。 11、抓好集体备课。 职校高一数学教学计划 篇201、认真按时完成教学任务,本学期学完高一数学的全部内容,并力争挤出时间学习高二数学的第一章,为高三学习争取更多的时间。 2、继续实施“导学案教学方法”完善导学案,形成集美中学特色的教学方法,培养学生自我学习的能力和习惯,使学生做到简单知识自己能学会,较难知识在老师点拔下能学会,难度大的知识在老师的讲解下能轻松学会。 3、教师间相互听课,每周每个教师听课不少于两节,并及时的反馈交流,互相取长补短使老教师呆板陈旧的教学方法变得活泼生动,充满生机,使新教师教学水平逐步走向成熟而稳健;组织好期中、期末的复习、考试、出题、评卷、讲评、个别指导工作,约在12周左右进行期中考试。 4、加强尖子生的培养工作,定期对他们进行辅导或者跟踪检测,以使他们成为全市的数学尖子,为学校争光,进而带动全校数学成绩的提高,提高集美中学的数学层次。 5、重点工作放在中下等学生的教学、管理、辅导、心理调节与学习方法指导上,使他们学所有所得、学有所成,培养他们的自信心,自我学习的意识和能力,着眼于学生的未来,迫使他们养成良好的学习习惯,思维习惯,行为习惯,以期在高考中取得优异成绩,为学校赢得更大的荣誉。 职校高一数学教学计划 篇21分析近几年高考数学试卷,考察方向越来越清晰,即本着课改方向:能力立意,重点考查学生数学本质思想的理解及其思维能力和创新意识。从题目上看比较贴近中学教学实际,在坚持对五个能力(空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力)、两个意识(应用意识、创新意识)考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色。考查更加科学。本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。正因为如此,我们组对本学期计划如下: 一、以“为学生的终身幸福奠基的理念”为指引,切实落实 “6+1”教学模式及精神实质,在学校“高效课堂,精细管理,激情教育”三箭齐发的大背景下,在教学处、年级组、教研组的监督与指导下,严格遵守教学计划,落实教学常规,全体组员做到以下几点: (1)、全组成员精诚团结,互相学习,取长补短,一定要使我们高一数学备课组组成为一个优秀集体。 (2)、规定集体备课的时间,分工协作,加强研讨,统一教学进度,统一课件,又要根据本班的学情进行复备。 (3)、积极参与备课组的教学资源的建设,鼓励每位教师就自己在教学中的经验、体会或教训,及时总结。 2、四个重视,即重视课堂管理,重视过程管理,重视质量管理,重视合力管理。在组内形成一股正气,形成浓厚的“赶学比帮超”的学风,研究6+1,研究高考,为自己的成才铺路,为学校的逆势崛起添力。 二、教学内容及教材分析 1、教材版本 人教出版设A版 数学必修1、数学必修4. 2、教材内容的整体分析: 主要内容包括:必修1集合与函数概念,基本初等函数,函数的应用三章内容;必修4三角函数,平面向量,三角恒等变换分为三章。 人教A版教材体现基础性、时代性、典型性、和可接受性等,具有的如下特点: (1)亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习兴趣。 (2)问题性:一恰时恰当的问题引导教学活动,培养问题意识,孕育创新精神。 3、重点、难点:集合的概念及性质,函数的概念及性质,三角函数的概念及性质,平面向量. 三、教学策略及主要措施 高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下: (1)注意研究学生,做好初、高中学习方法的衔接工作。 (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。. (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。 (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备 (5)针对清北班、重点班和普通班不同的班级进行分类教学。对清北班、重点班学生严格要求,注重数学思想方法、计算、速度、规范等各方面的培养;普通班学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性及学习习惯的养成。 三类班级还都应做到:课前评价和弥补的策略;注意思维过程;注意数学知识间的比较和转化过程,比较可使新旧知识建立联系,那么转化则可把新问题化归为旧问题(利用比较),然后利用已有的知识进行突破。 职校高一数学教学计划 篇22一、指导思想 学科组是学校教育教学工作中一个基层组织,是学校教学工作的一个重要组成部分。所以我们的一切工作必须围绕“全面提高学校教学质量”这个中心任务而开展。在抓好教学常规,落实学校各项具体工作同时,认真学习课改纲要,转变教学理念,积极打造“主动—有效”课堂,实施“精细化与精致化”教学研究,争取全面提升我校的高中数学教学质量。 二、工作方向 (一).积极开展主动-有效课堂教学 在学校,教育和教学的主阵地在课堂,要使课堂达到有效,离不开充分解放学生的大脑、双手、嘴巴、眼睛等多种器官,确保学生思维在学习过程中始终于积极活跃主动的状态,使课堂教学成为一系列学生主体活动的开和整合过程,使得课堂焕发出生命的活力。如果能达到这种效能。课堂教学就能有效、能力提高也能事半功倍。为了达到这个目的,教师应做好几个“优化”: 1、优化备课 (1)科组老师要树立目标意识,责任意识,主动意识,全局意识。全作意识。 (2)备课是上好一节课的最重要的环节,备课质量的好坏直接影响课堂效率的高底。怎么备?当然最好是能发挥个人才智、铸就团体实力。备课组要做到统一目标,统一进度,统一重点与难点,统一作业,统一测练,备课表,备教材,备学生,备教学目标;要求、教学方法、课堂模式、从而确定最佳的教学方案,做到共性与个性的统一。 总之,不管是集体备课还是个人单独备课,要达到优化,都要做到心中有课标,心中有资料,心中有教材,心中有重点难点,心中有学生,心中有教学思路,心中有教学方法,心中有教学语言。 2、优化师生关系 亲其师,信其道。教师必须主动承担改善师生关系的责任,要尊重学生的劳动,不挖苦、讽刺回答错误的学生,提问时应以真诚的眼光注视学生,用亲切的语气启发学生,用信任的心态引导学生,用虚心的态度听取学生的建议,及时调整教学策略,营造平等宽松的氛围,让学生愉悦地学习,就能取得好的效果。 3、优化学法指导 教无定法,学贵得法,现在让我们头疼的是学生仅仅是机械的学,被动得再也没有这样被动了,我们所取得的效益是大粗放型的。执着——疲惫——心痛循环地伴随着教师,不摆脱这种状况,我们就真正很快成为燃烧的昏暗的蜡烛了,燃烧了自己但照不亮别人。因此,我们应该在学法上下功夫,指导学生自学——帮助学生制定自学方案——鼓励学生提出问题——帮助学生寻求解决问题的方法——精讲学生解决不了的问题——补充学生遗留的问题上来优化学生的学法。变被动为主动,便学会为会学。 4.优化习题练评 课堂练习是检验学生学习情况巩固学生学习效果,把所学的知识转化为能力的重要手段。因此精选好课堂练习供学生学习是十分必要的,特别是我们现在要面对全闭卷考试,考察的是学生的记忆能力,分析理解归纳能力,综合能力,而这些能力的培养和提高,又需要一个很长的过程,所以,平时设计的习题要结合学生的实际情况,有针对性地进行练习,对学生存在的问题,老师要耐心的做好讲评点拨工作,使学生循序渐进地提高记忆能力,审题能力,对所学知识的转换和迁移能力,最后达到提高综合能力的目的。 5、优化教学反思 反思包括教与学的反思。教的反思是指导教师的反思,教师从课堂教学中反思,从测试中反思,不断总结经验教训,提高教学与教研水平。学的反思指的是学生的反思,作为教师要指导学生及时反思自己的学习状况,改进学习方法,加强师生双方的反思,将会使教学沿着正确的轨道快速前进。 以上是我们高一数学组在有效课堂教学中的一些想法,在这个学期的实施中,希望能达到有效高效的效果。 三:教材分析 必修(1)分三章,共36课时,第一章,集合与函数(13课时);第二章,基本初等函数(13课时); 第三章,函数的应用(9课时)。本章中,学生将在第一章学习函数概念的基础上,通过三个具体的基本初等函数的学习,进一步理解函数的概念与性质,学习用函数模型研究和解决一些实际问题的方法。 必修(2)包含空间几何体,点、直线、平面之间的位置关系,直线与方程,圆与方程等四章内容,它们是学习后续必修系列和选修系列的基础,全书共36课时。 职校高一数学教学计划 篇23指导思想: (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。 (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。 (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。 (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。 (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。 (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。 学情分析及相关措施: 高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下: (1)注意研究学生,做好初、高中学习方法的衔接工作。 (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。. (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。 (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备 (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。 (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。 教学进度安排: 周 次 时 内 容 重 点、难 点 第1周 9.2~9.6 5 集合的含义与表示、 集合间的基本关系、 会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念 第2周 9.7~9.13 5 集合的基本运算 函数的概念、 函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用 第3周 9.14~9.20 5 单调性与最值、 奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义 第4周 9.21~9.27 5 指数与指数幂的运算、 指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念 第5周 9.28~10.4 5 (9月月考?、国庆放假) 第6周 10.5~10.11 5 对数与对数运算、 对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数 第7周 10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质 第8周 10.19~10.25 5 方程的根与函数零点, 二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解; 第9周 10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义 第10周 11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试 第11周 11.9~11.15 5 任意角和弧度制 任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义 第12周 11.16~11.22 5 三角函数的诱导公式 三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性 第13周 11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响 第14周 11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型 第15周 12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算 第16周 12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系 第17周 12.21~12.27 5 平面向量应用举例, 小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力 第18周 12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系 第19周 1.4~1.10 5 简单的三角恒等变换 期末复习 职校高一数学教学计划 篇24针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻因人施教,因材施教原则。以学法指导为突破口;着重在读、讲、练、辅、作业等方面下功夫,取得一定效果。 加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。 及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由懂到会。 独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由会到熟。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。 系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由活到悟。 课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。 1、读。俗话说不读不愤,不愤不悱。首先要读好概念。读概念要咬文嚼字,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的我校高一年级学生、我家的家用电器、太平洋、大西洋、印度洋、北冰洋及自然数等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。确定性、无序性、互异性常常是集合的代名词。 再如象限角的概念,要向学生解释清楚,角的始边与_轴的非负半轴重合和与_轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn.有q1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意真数大于0的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说议一议知是非,争一争明道理。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。 2、讲。外国有一位教育家曾经说过:教师的作用在于将冰冷的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。 每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。 例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。 3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行高、深、难练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生跳一跳可以摸得着。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点弯路 ,吃点苦头另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。 例如,高一(下)P26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在_轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。 4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的最近发展区更好地学习数学,得到最好的发展,制定分层次作业。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。 5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。 职校高一数学教学计划 篇25一、基本情况 高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础. 二、指导思想 全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。 三、工作任务和措施 任务:基础模块第一章至第四章 第一章集合(9月份 第二章不等式(10月份 第三章函数(11月份 第四章指数函数与对数函数(12月份-1月份 措施: 1.夯实三基 知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意: A.教学面向全体学生。 B.重视概念的归纳、规律的总结、技能的训练。 C.重视知识的产生、发展过程。 D.加强知识过关检测,做好查漏补缺工作。 2.优化课堂教学结构 A.精心设计课堂教学: B.课堂练习典型化; C.教学语言精练化 D.板书规范化。 3.加强学习方法指导: A.指导学生看书,培养学生主动学习的习惯。 B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。 4.加强学风建设与学习习惯的培养。 适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。 四、各章节授课具体时间安排: (基础模块第一章集合(约12课时 (1理解集合、元素及其关系,掌握集合的表示法。 (2掌握集合之间的关系(子集、真子集、相等。 (3理解集合的运算(交、并、补。 (4了解充要条件。 (基础模块第二章不等式(约12课时 (1理解不等式的基本性质。 (2掌握区间的概念。高一上数学教学计划高一上数学教学计划。 (3掌握一元二次不等式的解法。 基础模块)第三章函数(约20课时 (1理解函数的概念和函数的三种表示法。 (2理解函数的单调性与奇偶性。 (3能运用函数的知识解决有关实际问题。 (基础模块第四章指数函数与对数函数(约20课时 (1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。 (2了解幂函数的概念及其简单性质。 (3理解指数函数的概念、图像及性质。 (4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。 (5理解对数函数的概念、图像及性质。 (6能运用指数函数与对数函数的知识解决有关实际问题。 职校高一数学教学计划 篇26一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。 1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的`本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。 2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。 3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。 4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。 5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。 6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点: 1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。 2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。 4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析: 1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。 2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。 3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、学情分析: 两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。 同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。 五、教学措施: 1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。 2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。 5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。 6、重视数学应用意识及应用本事的培养。 职校高一数学教学计划 篇27一、指导思想 本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生本事的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的成绩。 二、教学目标、 (一)情意目标 (1)经过分析问题的方法的教学,培养学生的学习的兴趣。 (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。 (二)本事要求 1、培养学生记忆本事。 (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)经过揭示三角函数有关概念、公式和图形的对应关系,培养记忆本事。 2、培养学生的运算本事。 (1)经过概率的训练,培养学生的运算本事。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。 (3)经过算法初步,1算法步骤2程序框图(起始框,确定框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。 (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算本事。 三、具体措施 1、期中考前上好第一册(必修3),期中考后完成好必修4 2、抓好数学补差,培优活动各班在星期1或星期4的午时 3、立足于教材。 4、要求学生完成课后练习及每一章课后习题 5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。 6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。 7抓好竞赛辅导,时间定于周三、周四的提前时间,周六的午时1点到3点;任教教师:高一全体数学教师。 8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次; 9、上学期必修4的学分认定考试补考及落实工作; 10、响应学校教务处的备课计划安排,督促组员落实工作; 11、抓好团体备课 职校高一数学教学计划 篇28一、工作目标及指导思想 1、培养学生良好的高中数学学习习惯。初中学习与高中学习无论是从知识的容量,还是知识的难度来说,都有很大的差异。因此,高中学习最关键的一环就是要培养良好的学习习惯。如预习如何做,复习如何做,晚上要做什么,周末如何安排,如何处理练习等等。养成良好的数学学习习惯,有利于数学学习的开展,有利于建立数学学习的自信。 2、优化学生的学习方法,使他们能通过观察、体验、探究、讨论等主动学习的方法,充分发挥自己的学习潜能,形成有效的学习策略,提高自主学习的能力,增强学生学习的主动性。 3、优化教师的教学方法,结合新教材,采用新理念,使用新教法,是我们备课组所有老师的共同想法。因此,在自主学习的基础上,大家又利用自身不同的特点,设计一些新理念的课程,以丰富教学形式,真正把课堂还给学生。 4、关注学生的情感,提高他们的数学能力。结合数学史,培养学生的学习兴趣,从而激发学生的学习动力,让学生认识到数学的工具性,提高数学能力及解决实际问题的能力。 5、注重过程评价。不要一味以对错衡量学生掌握知识的程度,而是关注他知道了多少,有什么想法,还有哪些不足,对学生在学习过程中的表现、所取得的成绩以及所反映出的情感态度策略等方面的发展做出评价,以激发学生学习的积极性和自信心。 6、多学习新的教学理论和学习理论知识,研究新课改地区的几年高考题,用以指导实际工作。 二、具体工作安排: 2、按照教务处安排,组织教研活动,特别是新课程相关的教学展示、研讨等。准备七节示范课,每位高一教师一节,以相互学习,相互研究,上课顺序:①吴林,②陈海平,③陈良照,④张继永,⑤王海萍,⑥胡小浇和⑦沈海军。 3、精讲精练,落实每周一练制度及单元过关测试,教师要全批全改,及时认真讲评。并做好试卷补偿练习,单元卷由备课组成员轮流负责,做到侧重知识点的覆盖,难度控制(不可太难。 4、抓好数学竞赛人才的选拔,落实竞赛课程的内容、教学进度及人员安排。 5、加强尖子生的培养和后进生的转化工作。做好尖子生的培养工作及所有学生的学习情况跟踪工作,争取不让学生掉队,认真做好因材施教,积极探讨分层教学的教学方法。 6、指导学生尽快适应高、初中过渡阶段的学习,教学时应注意高、初中知识的衔接,并对学生进行学法指导。 7、落实新老教师的传、帮、带工作,促进全体教师共同成长。力争在新的学期里超越兄弟学校。 三、科研工作 1、配合完成数学组市规课题几何画板的相关教研内容。 2、结合新课程教学,完成相关的论文撰写。 职校高一数学教学计划 篇29一、指导思想: 在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点: 1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。 2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。 4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 职校高一数学教学计划 篇30教学分析 课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等. 值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别. 三维目标 1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力. 2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想. 重点难点 教学重点:理解集合间包含与相等的含义. 教学难点:理解空集的含义. 课时安排 1课时 教学过程 导入新课 思路1.实数有相等、大小关系,如5=5,53等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生) 欲知谁正确,让我们一起来观察、研探. 思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈) 推进新课 提出问题 (1)观察下面几个例子: ①A={1,2,3},B={1,2,3,4,5}; ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合; ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}; ④E={2,4,6},F={6,4,2}. 你能发现两个集合间有什么关系吗? (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别? (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论? (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示? (5)试用Venn图表示例子①中集合A和集合B. (6)已知A?B,试用Venn图表示集合A和B的关系. (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗? (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢? (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论? 活动:教师从以下方面引导学生: (1)观察两个集合间元素的特点. (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A). (3)实数中的“≤”类比集合中的 . (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图. (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制. (6)分类讨论:当A B时,A B或A=B. (7)方程x2+1=0没有实数解. (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ). (9)类比子集. 讨论结果: (1)①集合A中的元素都在集合B中; ②集合A中的元素都在集合B中; ③集合C中的元素都在集合D中; ④集合E中的元素都在集合F中. 可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中. (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同. (3)若A B,且B A,则A=B. (4)可以把集合中元素写在一个封闭曲线的内部来表示集合. (5)如图1121所示表示集合A,如图1122所示表示集合B. 图1-1-2-1 图1-1-2-2 (6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-3 图1-1-2-4 (7)不能.因为方程x2+1=0没有实数解. (8)空集. 职校高一数学教学计划 篇31本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。 一、教学目标. (一)情意目标 (1)通过分析问题的方法的教学,培养学生的学习的兴趣。 (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。 (3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。 (二)能力要求 1、培养学生记忆能力。 (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (2)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。 2、培养学生的运算能力。 (1)通过三角函数求值与化简问题的训练,培养学生的运算能力。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。 (3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。 (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算能力。 3、培养学生的思维能力。 (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。 (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。 (3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。 (4)加强知识的横向联系,培养学生的数形结合的能力。 (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。 (三)知识目标 二、教学要求 (一)三角函数 1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算. 2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式. 3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力 4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆). 5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义. 6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。 (二)平面向量 1、理解向量的概念,掌握向量的几何表示,了解共线问量的概念 2、掌握向量的加法与减法 3、掌握实数与向量的积,理解两个向量共线的充要条件 4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件 6、掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式 7、掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 8、通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力 9、通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流. 三、教学重点 1、掌握同角三角函数的基本关系式 2、掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式; 3、用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。 4、掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形 四、教学难点 1、函数y=Asin(ωx+φ)的简图 2、会用与单位圆有关的三角函数线画正弦函数、正切函数的图象 3、掌握正弦定理、余弦定理,并能运用它们解斜三角形 五、工作措施. 1、抓好课堂教学,提高教学效益。 课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。 (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。 (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。 2、加强课外辅导,提高竞争能力。 课外辅导是课堂的有力补充,是提高数学成绩的有力手段。 (1)加强数学数学竞赛的指导,提高学习兴趣。 (2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。 (2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。 3、搞好单元考试、阶段性考试的分析。 学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。 职校高一数学教学计划 篇32、 Ⅰ.教学内容解析 本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质. 这是指数函数在本章的位置. 指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程. 指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义. Ⅱ.教学目标设置 1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念. 2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小. 3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法. 4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力. Ⅲ.学生学情分析 授课班级学生为南京师大附中实验班学生. 1.学生已有认知基础 学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯. 2.达成目标所需要的认知基础 学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力. 3.难点及突破策略 难点:1. 对研究函数的一般方法的认识. 2. 自主选择底数不当导致归纳所得结论片面. 突破策略: 1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段. 2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思. 3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合. Ⅳ.教学策略设计 根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段. 学生的自主学习,具体落实在三个环节: (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念. (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升. (3)性质应用阶段,学生自主举例说明指数函数性质的应用. 研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明. Ⅴ.教学过程设计 1.创设情境建构概念 师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗? 师:大家知道细胞分裂的规律吗?(出示情境问题) [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系? [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系? [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x. 师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗? 〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式? [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”. [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax. [教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax. 方案1: 生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1)) 师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?) 生:函数y=0.5x,y= x,y=(-2)x,y=1x… 师:板书学生举例(停顿),好像有不同意见. 生:底数不能取负数. 师:为什么? 生:如果底数取负数或0,x就不能取任意实数了. 师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R. (若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?) 师:这些函数有什么共同特点? 生:都有指数运算.底数是常数,自变量在指数位置. (若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.) 师:具备上述特征的函数能否写成一般形式? 生:可以写成y=ax(a>0). 师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义) 方案2: 生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1)) 师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?) 生:函数y=0.5x,y= x,… 师:这些函数的自变量是什么?它们有什么共同特点? 生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax. 师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢? 生:底数不能取负数. 师:为什么? 生:如果底数取负数或0,x就不能取任意实数了. 师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义) [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R. [意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理. 2.实验探索汇报交流 (1)构建研究方法 师:我们定义了一个新的函数,接下来,我们研究什么呢? 生:研究函数的性质. 〖问题2你打算如何研究指数函数的性质? [设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑. [师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法. [教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证. 师:(稍等片刻)我们一般要研究哪些性质呢? 生:变量取值范围(定义域、值域)、单调性、奇偶性. 师:(板书学生回答)怎样研究这些性质呢? 生:先画出函数图象,观察图象,分析函数性质. 生:先研究几个具体的指数函数,再研究一般情况. 师:板书“画图观察”,“取特殊值” (若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?) (若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.)) [意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展. (2)自主探究汇报交流 师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了. 〖问题3选取数据,画出图象,观察特点,归纳性质. [设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法. 由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想. 数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验. [师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质. [教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究. 生:自主选择数据,在坐标纸上列表作图,列出函数性质. 师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.) 生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数. 师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1? 师:(用彩笔描粗图象,故意出错)错在哪里?为什么? 生:指数函数是单调递增的,过定点(0, 1). 师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1). 师:指数函数还有其它性质吗? 师:也就是说值域为(0, +∞). 生:指数函数是非奇非偶函数. 师:有不同意见吗? 生:当0 (其它预设: (1)当a>1时,若x>0,则y>1;若x1. 欲知谁正确,让我们一起来观察、研探. 思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈) 推进新课 提出问题 (1)观察下面几个例子: ①A={1,2,3},B={1,2,3,4,5}; ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合; ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}; ④E={2,4,6},F={6,4,2}. 你能发现两个集合间有什么关系吗? (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别? (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论? (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示? (5)试用Venn图表示例子①中集合A和集合B. (6)已知A?B,试用Venn图表示集合A和B的关系. (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗? (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢? (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论? 活动:教师从以下方面引导学生: (1)观察两个集合间元素的特点. (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A). (3)实数中的“≤”类比集合中的 . (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图. (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制. (6)分类讨论:当A B时,A B或A=B. (7)方程x2+1=0没有实数解. (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ). (9)类比子集. 讨论结果: (1)①集合A中的元素都在集合B中; ②集合A中的元素都在集合B中; ③集合C中的元素都在集合D中; ④集合E中的元素都在集合F中. 可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中. (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同. (3)若A B,且B A,则A=B. (4)可以把集合中元素写在一个封闭曲线的内部来表示集合. (5)如图1121所示表示集合A,如图1122所示表示集合B. 图1-1-2-1 图1-1-2-2 (6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-3 图1-1-2-4 (7)不能.因为方程x2+1=0没有实数解. (8)空集. |
随便看 |
|
范文大全网提供教案、简历、作文、工作总结等各类优秀范文及写作素材,是综合性免费范文平台。